Towards Robust and Controllable Text-to-Motion via Masked Autoregressive Diffusion
- URL: http://arxiv.org/abs/2505.11013v1
- Date: Fri, 16 May 2025 09:06:15 GMT
- Title: Towards Robust and Controllable Text-to-Motion via Masked Autoregressive Diffusion
- Authors: Zongye Zhang, Bohan Kong, Qingjie Liu, Yunhong Wang,
- Abstract summary: We propose a robust motion generation framework MoMADiff, which combines masked modeling with diffusion processes to generate motion.<n>Our model supports flexible user-provided specification, enabling precise control over both spatial and temporal aspects of motion synthesis.<n>Our method consistently outperforms state-of-the-art models in motion quality, instruction fidelity, and adherence.
- Score: 33.9786226622757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating 3D human motion from text descriptions remains challenging due to the diverse and complex nature of human motion. While existing methods excel within the training distribution, they often struggle with out-of-distribution motions, limiting their applicability in real-world scenarios. Existing VQVAE-based methods often fail to represent novel motions faithfully using discrete tokens, which hampers their ability to generalize beyond seen data. Meanwhile, diffusion-based methods operating on continuous representations often lack fine-grained control over individual frames. To address these challenges, we propose a robust motion generation framework MoMADiff, which combines masked modeling with diffusion processes to generate motion using frame-level continuous representations. Our model supports flexible user-provided keyframe specification, enabling precise control over both spatial and temporal aspects of motion synthesis. MoMADiff demonstrates strong generalization capability on novel text-to-motion datasets with sparse keyframes as motion prompts. Extensive experiments on two held-out datasets and two standard benchmarks show that our method consistently outperforms state-of-the-art models in motion quality, instruction fidelity, and keyframe adherence.
Related papers
- GENMO: A GENeralist Model for Human MOtion [64.16188966024542]
We present GENMO, a unified Generalist Model for Human Motion that bridges motion estimation and generation in a single framework.<n>Our key insight is to reformulate motion estimation as constrained motion generation, where the output motion must precisely satisfy observed conditioning signals.<n>Our novel architecture handles variable-length motions and mixed multimodal conditions (text, audio, video) at different time intervals, offering flexible control.
arXiv Detail & Related papers (2025-05-02T17:59:55Z) - AnyMoLe: Any Character Motion In-betweening Leveraging Video Diffusion Models [5.224806515926022]
We introduce AnyMoLe, a novel method to generate motion in-between frames for arbitrary characters without external data.<n>Our approach employs a two-stage frame generation process to enhance contextual understanding.
arXiv Detail & Related papers (2025-03-11T13:28:59Z) - Motion Anything: Any to Motion Generation [24.769413146731264]
Motion Anything is a multimodal motion generation framework.<n>Our model adaptively encodes multimodal conditions, including text and music, improving controllability.<n>Text-Music-Dance dataset consists of 2,153 pairs of text, music, and dance, making it twice the size of AIST++.
arXiv Detail & Related papers (2025-03-10T06:04:31Z) - Motion-Aware Generative Frame Interpolation [23.380470636851022]
Flow-based frame methods ensure motion stability through estimated intermediate flow but often introduce severe artifacts in complex motion regions.<n>Recent generative approaches, boosted by large-scale pre-trained video generation models, show promise in handling intricate scenes.<n>We propose Motion-aware Generative frame (MoG) that synergizes intermediate flow guidance with generative capacities to enhance fidelity.
arXiv Detail & Related papers (2025-01-07T11:03:43Z) - Learning Generalizable Human Motion Generator with Reinforcement Learning [95.62084727984808]
Text-driven human motion generation is one of the vital tasks in computer-aided content creation.
Existing methods often overfit specific motion expressions in the training data, hindering their ability to generalize.
We present textbfInstructMotion, which incorporate the trail and error paradigm in reinforcement learning for generalizable human motion generation.
arXiv Detail & Related papers (2024-05-24T13:29:12Z) - Animate Your Motion: Turning Still Images into Dynamic Videos [58.63109848837741]
We introduce Scene and Motion Conditional Diffusion (SMCD), a novel methodology for managing multimodal inputs.
SMCD incorporates a recognized motion conditioning module and investigates various approaches to integrate scene conditions.
Our design significantly enhances video quality, motion precision, and semantic coherence.
arXiv Detail & Related papers (2024-03-15T10:36:24Z) - MotionMix: Weakly-Supervised Diffusion for Controllable Motion
Generation [19.999239668765885]
MotionMix is a weakly-supervised diffusion model that leverages both noisy and unannotated motion sequences.
Our framework consistently achieves state-of-the-art performances on text-to-motion, action-to-motion, and music-to-dance tasks.
arXiv Detail & Related papers (2024-01-20T04:58:06Z) - TrackDiffusion: Tracklet-Conditioned Video Generation via Diffusion Models [75.20168902300166]
We propose TrackDiffusion, a novel video generation framework affording fine-grained trajectory-conditioned motion control.
A pivotal component of TrackDiffusion is the instance enhancer, which explicitly ensures inter-frame consistency of multiple objects.
generated video sequences by our TrackDiffusion can be used as training data for visual perception models.
arXiv Detail & Related papers (2023-12-01T15:24:38Z) - DiverseMotion: Towards Diverse Human Motion Generation via Discrete
Diffusion [70.33381660741861]
We present DiverseMotion, a new approach for synthesizing high-quality human motions conditioned on textual descriptions.
We show that our DiverseMotion achieves the state-of-the-art motion quality and competitive motion diversity.
arXiv Detail & Related papers (2023-09-04T05:43:48Z) - Priority-Centric Human Motion Generation in Discrete Latent Space [59.401128190423535]
We introduce a Priority-Centric Motion Discrete Diffusion Model (M2DM) for text-to-motion generation.
M2DM incorporates a global self-attention mechanism and a regularization term to counteract code collapse.
We also present a motion discrete diffusion model that employs an innovative noise schedule, determined by the significance of each motion token.
arXiv Detail & Related papers (2023-08-28T10:40:16Z) - Interactive Character Control with Auto-Regressive Motion Diffusion Models [18.727066177880708]
We propose A-MDM (Auto-regressive Motion Diffusion Model) for real-time motion synthesis.
Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on previous frame.
We introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning.
arXiv Detail & Related papers (2023-06-01T07:48:34Z) - Enhanced Fine-grained Motion Diffusion for Text-driven Human Motion
Synthesis [21.57205701909026]
We propose DiffKFC, a conditional diffusion model for text-driven motion synthesis with KeyFrames Collaborated.
Our model achieves state-of-the-art performance in terms of semantic fidelity, but more importantly, is able to satisfy animator requirements through fine-grained guidance without tedious labor.
arXiv Detail & Related papers (2023-05-23T07:41:29Z) - MoFusion: A Framework for Denoising-Diffusion-based Motion Synthesis [73.52948992990191]
MoFusion is a new denoising-diffusion-based framework for high-quality conditional human motion synthesis.
We present ways to introduce well-known kinematic losses for motion plausibility within the motion diffusion framework.
We demonstrate the effectiveness of MoFusion compared to the state of the art on established benchmarks in the literature.
arXiv Detail & Related papers (2022-12-08T18:59:48Z) - MoDi: Unconditional Motion Synthesis from Diverse Data [51.676055380546494]
We present MoDi, an unconditional generative model that synthesizes diverse motions.
Our model is trained in a completely unsupervised setting from a diverse, unstructured and unlabeled motion dataset.
We show that despite the lack of any structure in the dataset, the latent space can be semantically clustered.
arXiv Detail & Related papers (2022-06-16T09:06:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.