Leveraging Real-Time Data Analysis and Multiple Kernel Learning for Manufacturing of Innovative Steels
- URL: http://arxiv.org/abs/2505.11024v1
- Date: Fri, 16 May 2025 09:21:14 GMT
- Title: Leveraging Real-Time Data Analysis and Multiple Kernel Learning for Manufacturing of Innovative Steels
- Authors: Wolfgang Rannetbauer, Simon Hubmer, Carina Hambrock, Ronny Ramlau,
- Abstract summary: This article proposes updating the established coating process for thermally spray coated components for steel manufacturing.<n>The data aggregator and the quality predictor are designed through continuous process monitoring.<n>The performance of this combination was verified using small-scale tests.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The implementation of thermally sprayed components in steel manufacturing presents challenges for production and plant maintenance. While enhancing performance through specialized surface properties, these components may encounter difficulties in meeting modified requirements due to standardization in the refurbishment process. This article proposes updating the established coating process for thermally spray coated components for steel manufacturing (TCCSM) by integrating real-time data analytics and predictive quality management. Two essential components--the data aggregator and the quality predictor--are designed through continuous process monitoring and the application of data-driven methodologies to meet the dynamic demands of the evolving steel landscape. The quality predictor is powered by the simple and effective multiple kernel learning strategy with the goal of realizing predictive quality. The data aggregator, designed with sensors, flow meters, and intelligent data processing for the thermal spray coating process, is proposed to facilitate real-time analytics. The performance of this combination was verified using small-scale tests that enabled not only the accurate prediction of coating quality based on the collected data but also proactive notification to the operator as soon as significant deviations are identified.
Related papers
- A Novel Method to Manage Production on Industry 4.0: Forecasting Overall Equipment Efficiency by Time Series with Topological Features [0.0]
Overall equipment efficiency (OEE) is a key manufacturing production, but its volatile nature complicates short-term forecasting.<n>This study presents a novel framework combining time series decomposition and topological data analysis to improve OEE prediction across various equipment.
arXiv Detail & Related papers (2025-06-20T10:04:49Z) - Denoising Score Distillation: From Noisy Diffusion Pretraining to One-Step High-Quality Generation [82.39763984380625]
We introduce denoising score distillation (DSD), a surprisingly effective and novel approach for training high-quality generative models from low-quality data.<n>DSD pretrains a diffusion model exclusively on noisy, corrupted samples and then distills it into a one-step generator capable of producing refined, clean outputs.
arXiv Detail & Related papers (2025-03-10T17:44:46Z) - Generative Dataset Distillation Based on Self-knowledge Distillation [49.20086587208214]
We present a novel generative dataset distillation method that can improve the accuracy of aligning prediction logits.<n>Our approach integrates self-knowledge distillation to achieve more precise distribution matching between the synthetic and original data.<n>Our method outperforms existing state-of-the-art methods, resulting in superior distillation performance.
arXiv Detail & Related papers (2025-01-08T00:43:31Z) - Data-driven tool wear prediction in milling, based on a process-integrated single-sensor approach [1.6574413179773764]
This study explores data-driven methods, in particular deep learning, for tool wear prediction.<n>It investigates the transferability of predictive models using minimal training data, validated across two processes.<n>The ConvNeXt model has an exceptional performance, achieving 99.1% accuracy in identifying tool wear.
arXiv Detail & Related papers (2024-12-27T23:10:32Z) - A Predictive Model Based on Transformer with Statistical Feature Embedding in Manufacturing Sensor Dataset [2.07180164747172]
This study proposes a novel predictive model based on the Transformer, utilizing statistical feature embedding and window positional encoding.
The model's performance is evaluated in two problems: fault detection and virtual metrology, showing superior results compared to baseline models.
The results support the model's applicability across various manufacturing industries, demonstrating its potential for enhancing process management and yield.
arXiv Detail & Related papers (2024-07-09T08:59:27Z) - Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
We propose to deploy a digital twin of the production line by encoding its operational logic in a data-driven approach.
We adopt a quality prediction model for production process based on self-attention-enabled temporal convolutional neural networks.
Our operation experiments on a specific tobacco shredding line demonstrate that the proposed digital twin-based production process optimization method fosters seamless integration between virtual and real production lines.
arXiv Detail & Related papers (2024-05-20T09:28:23Z) - Reliability in Semantic Segmentation: Can We Use Synthetic Data? [69.28268603137546]
We show for the first time how synthetic data can be specifically generated to assess comprehensively the real-world reliability of semantic segmentation models.
This synthetic data is employed to evaluate the robustness of pretrained segmenters.
We demonstrate how our approach can be utilized to enhance the calibration and OOD detection capabilities of segmenters.
arXiv Detail & Related papers (2023-12-14T18:56:07Z) - A hybrid machine learning framework for clad characteristics prediction
in metal additive manufacturing [0.0]
Metal additive manufacturing (MAM) has experienced significant developments and gained much attention.
Predicting the impact of processing parameters on the characteristics of an MAM printed clad is challenging due to the complex nature of MAM processes.
Machine learning (ML) techniques can help connect the physics underlying the process and processing parameters to the clad characteristics.
arXiv Detail & Related papers (2023-07-04T18:32:41Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z) - Comprehensive process-molten pool relations modeling using CNN for
wire-feed laser additive manufacturing [14.092644790436635]
Wire-feed laser additive manufacturing (WLAM) is gaining wide interest due to its high level of automation, high deposition rates, and good quality of printed parts.
In-process monitoring and feedback controls that would reduce the uncertainty in the quality of the material are in the early stages of development.
This paper analyzes experimentally collected in situ sensing data from the molten pool under a set of controlled process parameters in a WLAM system.
arXiv Detail & Related papers (2021-03-22T05:27:20Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
We propose a novel augmentation method with language models trained on the linearized labeled sentences.
Our method is applicable to both supervised and semi-supervised settings.
arXiv Detail & Related papers (2020-11-03T07:49:15Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.