Predictive modeling approaches in laser-based material processing
- URL: http://arxiv.org/abs/2006.07686v1
- Date: Sat, 13 Jun 2020 17:28:52 GMT
- Title: Predictive modeling approaches in laser-based material processing
- Authors: Maria Christina Velli, George D. Tsibidis, Alexandros Mimidis,
Evangelos Skoulas, Yannis Pantazis and Emmanuel Stratakis
- Abstract summary: This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
- Score: 59.04160452043105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predictive modelling represents an emerging field that combines existing and
novel methodologies aimed to rapidly understand physical mechanisms and
concurrently develop new materials, processes and structures. In the current
study, previously-unexplored predictive modelling in a key-enabled technology,
the laser-based manufacturing, aims to automate and forecast the effect of
laser processing on material structures. The focus is centred on the
performance of representative statistical and machine learning algorithms in
predicting the outcome of laser processing on a range of materials. Results on
experimental data showed that predictive models were able to satisfactorily
learn the mapping between the laser input variables and the observed material
structure. These results are further integrated with simulation data aiming to
elucidate the multiscale physical processes upon laser-material interaction. As
a consequence, we augmented the adjusted simulated data to the experimental and
substantially improved the predictive performance, due to the availability of
increased number of sampling points. In parallel, a metric to identify and
quantify the regions with high predictive uncertainty, is presented, revealing
that high uncertainty occurs around the transition boundaries. Our results can
set the basis for a systematic methodology towards reducing material design,
testing and production cost via the replacement of expensive trial-and-error
based manufacturing procedure with a precise pre-fabrication predictive tool.
Related papers
- Impacts of Data Preprocessing and Hyperparameter Optimization on the Performance of Machine Learning Models Applied to Intrusion Detection Systems [0.8388591755871736]
Intrusion Detection Systems (IDS) have been continuously improved.
Many of them incorporate machine learning (ML) techniques to identify threats.
This article aims to present a study that fills this research gap.
arXiv Detail & Related papers (2024-07-15T14:30:25Z) - Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
We propose to deploy a digital twin of the production line by encoding its operational logic in a data-driven approach.
We adopt a quality prediction model for production process based on self-attention-enabled temporal convolutional neural networks.
Our operation experiments on a specific tobacco shredding line demonstrate that the proposed digital twin-based production process optimization method fosters seamless integration between virtual and real production lines.
arXiv Detail & Related papers (2024-05-20T09:28:23Z) - A Comparative Study of Machine Learning Models Predicting Energetics of Interacting Defects [5.574191640970887]
We present a comparative study of three different methods to predict the free energy change of systems with interacting defects.
Our findings indicate that the cluster expansion model can achieve precise energetics predictions even with this limited dataset.
This research provide a preliminary evaluation of applying machine learning techniques in imperfect surface systems.
arXiv Detail & Related papers (2024-03-20T02:15:48Z) - Electronic excited states from physically-constrained machine learning [0.0]
We present an integrated modeling approach, in which a symmetry-adapted ML model of an effective Hamiltonian is trained to reproduce electronic excitations from a quantum-mechanical calculation.
The resulting model can make predictions for molecules that are much larger and more complex than those that it is trained on.
arXiv Detail & Related papers (2023-11-01T20:49:59Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
We introduce a methodology that combines machine learning with Bayesian optimal experimental design (BOED)
Our method employs a neural network model for large-scale spin dynamics simulations for precise distribution and utility calculations in BOED.
Our numerical benchmarks demonstrate the superior performance of our method in guiding XPFS experiments, predicting model parameters, and yielding more informative measurements within limited experimental time.
arXiv Detail & Related papers (2023-06-03T06:19:20Z) - Addressing computational challenges in physical system simulations with
machine learning [0.0]
We present a machine learning-based data generator framework tailored to aid researchers who utilize simulations to examine various physical systems or processes.
Our approach involves a two-step process: first, we train a supervised predictive model using a limited simulated dataset to predict simulation outcomes.
Subsequently, a reinforcement learning agent is trained to generate accurate, simulation-like data by leveraging the supervised model.
arXiv Detail & Related papers (2023-05-16T17:31:50Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Trustworthiness of Laser-Induced Breakdown Spectroscopy Predictions via
Simulation-based Synthetic Data Augmentation and Multitask Learning [4.633997895806144]
We consider quantitative analyses of spectral data using laser-induced breakdown spectroscopy.
We address the small size of training data available, and the validation of the predictions during inference on unknown data.
arXiv Detail & Related papers (2022-10-07T18:00:09Z) - Predictive machine learning for prescriptive applications: a coupled
training-validating approach [77.34726150561087]
We propose a new method for training predictive machine learning models for prescriptive applications.
This approach is based on tweaking the validation step in the standard training-validating-testing scheme.
Several experiments with synthetic data demonstrate promising results in reducing the prescription costs in both deterministic and real models.
arXiv Detail & Related papers (2021-10-22T15:03:20Z) - Modeling and Optimizing Laser-Induced Graphene [59.8912133964006]
We provide datasets that describe the optimization of the production of laser-induced graphene.
We pose three challenges based on the datasets we provide.
We present illustrative results, along with the code used to generate them, as a starting point for interested users.
arXiv Detail & Related papers (2021-07-29T18:08:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.