論文の概要: FedDuA: Doubly Adaptive Federated Learning
- arxiv url: http://arxiv.org/abs/2505.11126v1
- Date: Fri, 16 May 2025 11:15:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:14.783573
- Title: FedDuA: Doubly Adaptive Federated Learning
- Title(参考訳): FedDuA: 二重適応型フェデレーションラーニング
- Authors: Shokichi Takakura, Seng Pei Liew, Satoshi Hasegawa,
- Abstract要約: フェデレーション学習(Federated Learning)は、クライアントが生データを共有せずにグローバルモデルを共同でトレーニングする分散学習フレームワークである。
我々は、ミラー降下レンズによる中央サーバ最適化手順を定式化し、FedDuAと呼ばれる新しいフレームワークを提案する。
提案した2次適応型ステップサイズルールは最小限最適であり,凸対象に対する収束解析を提供する。
- 参考スコア(独自算出の注目度): 2.6108066206600555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is a distributed learning framework where clients collaboratively train a global model without sharing their raw data. FedAvg is a popular algorithm for federated learning, but it often suffers from slow convergence due to the heterogeneity of local datasets and anisotropy in the parameter space. In this work, we formalize the central server optimization procedure through the lens of mirror descent and propose a novel framework, called FedDuA, which adaptively selects the global learning rate based on both inter-client and coordinate-wise heterogeneity in the local updates. We prove that our proposed doubly adaptive step-size rule is minimax optimal and provide a convergence analysis for convex objectives. Although the proposed method does not require additional communication or computational cost on clients, extensive numerical experiments show that our proposed framework outperforms baselines in various settings and is robust to the choice of hyperparameters.
- Abstract(参考訳): フェデレーション学習(Federated Learning)は、クライアントが生データを共有せずにグローバルモデルを共同でトレーニングする分散学習フレームワークである。
FedAvgは連邦学習のための一般的なアルゴリズムであるが、局所的なデータセットの不均一性やパラメータ空間における異方性のために、しばしば緩やかな収束に悩まされる。
本研究では、ミラー降下レンズによる中央サーバ最適化手順を定式化し、ローカル更新におけるクライアント間および協調的不均一性の両方に基づいて、グローバル学習率を適応的に選択するFedDuAと呼ばれる新しいフレームワークを提案する。
提案した2次適応型ステップサイズルールは最小限最適であり,凸対象に対する収束解析を提供する。
提案手法はクライアントに対して追加の通信や計算コストを必要としないが,大規模な数値実験により,提案手法は各種設定におけるベースラインよりも優れ,ハイパーパラメータの選択に頑健であることが示された。
関連論文リスト
- Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - Locally Adaptive Federated Learning [30.19411641685853]
フェデレートラーニング(Federated Learning)とは、複数のクライアントが中央サーバと協調してモデルを学習する分散機械学習のパラダイムである。
Federated Averaging (FedAvg)のような標準的なフェデレーション最適化手法は、クライアント間の一般化を保証する。
本稿では,各クライアント関数の局所的幾何情報を利用する局所的フェデレーション学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-07-12T17:02:32Z) - Adaptive Federated Learning via New Entropy Approach [14.595709494370372]
Federated Learning (FL) は、分散機械学習フレームワークとして注目されている。
本稿では,不均一クライアント間のパラメータ偏差を軽減するために,entropy理論(FedEnt)に基づく適応型FEDerated Learningアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-27T07:57:04Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。