Reinforcement Learning for AMR Charging Decisions: The Impact of Reward and Action Space Design
- URL: http://arxiv.org/abs/2505.11136v1
- Date: Fri, 16 May 2025 11:33:29 GMT
- Title: Reinforcement Learning for AMR Charging Decisions: The Impact of Reward and Action Space Design
- Authors: Janik Bischoff, Alexandru Rinciog, Anne Meyer,
- Abstract summary: We propose a novel reinforcement learning (RL) design to optimize the charging strategy for autonomous mobile robots in large-scale block stacking warehouses.<n>Our study focuses on how different reward and action space configurations, ranging from flexible setups to more guided, domain-informed design configurations, affect the agent performance.
- Score: 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel reinforcement learning (RL) design to optimize the charging strategy for autonomous mobile robots in large-scale block stacking warehouses. RL design involves a wide array of choices that can mostly only be evaluated through lengthy experimentation. Our study focuses on how different reward and action space configurations, ranging from flexible setups to more guided, domain-informed design configurations, affect the agent performance. Using heuristic charging strategies as a baseline, we demonstrate the superiority of flexible, RL-based approaches in terms of service times. Furthermore, our findings highlight a trade-off: While more open-ended designs are able to discover well-performing strategies on their own, they may require longer convergence times and are less stable, whereas guided configurations lead to a more stable learning process but display a more limited generalization potential. Our contributions are threefold. First, we extend SLAPStack, an open-source, RL-compatible simulation-framework to accommodate charging strategies. Second, we introduce a novel RL design for tackling the charging strategy problem. Finally, we introduce several novel adaptive baseline heuristics and reproducibly evaluate the design using a Proximal Policy Optimization agent and varying different design configurations, with a focus on reward.
Related papers
- RAGEN: Understanding Self-Evolution in LLM Agents via Multi-Turn Reinforcement Learning [125.96848846966087]
Training large language models (LLMs) as interactive agents presents unique challenges.<n>While reinforcement learning has enabled progress in static tasks, multi-turn agent RL training remains underexplored.<n>We propose StarPO, a general framework for trajectory-level agent RL, and introduce RAGEN, a modular system for training and evaluating LLM agents.
arXiv Detail & Related papers (2025-04-24T17:57:08Z) - Structural Design Through Reinforcement Learning [0.7874708385247352]
SOgym is a novel open-source Reinforcement Learning environment designed to advance machine learning in Topology Optimization (TO)
It generates physically viable and structurally robust designs by integrating the physics of TO into the reward function.
arXiv Detail & Related papers (2024-07-10T00:38:08Z) - Deep Reinforcement Learning from Hierarchical Preference Design [99.46415116087259]
This paper shows by exploiting certain structures, one can ease the reward design process.
We propose a hierarchical reward modeling framework -- HERON for scenarios: (I) The feedback signals naturally present hierarchy; (II) The reward is sparse, but with less important surrogate feedback to help policy learning.
arXiv Detail & Related papers (2023-09-06T00:44:29Z) - Proximal Curriculum for Reinforcement Learning Agents [17.654532900660712]
We design our curriculum strategy, ProCuRL, inspired by the pedagogical concept of Zone of Proximal Development (ZPD)
ProCuRL captures the intuition that learning progress is maximized when picking tasks that are neither too hard nor too easy for the learner.
arXiv Detail & Related papers (2023-04-25T14:49:34Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency.
We propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem.
Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines.
arXiv Detail & Related papers (2022-11-29T17:10:24Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Multi-fidelity reinforcement learning framework for shape optimization [0.8258451067861933]
We introduce a controlled transfer learning framework that leverages a multi-fidelity simulation setting.
Our strategy is deployed for an airfoil shape optimization problem at high Reynolds numbers.
Our results demonstrate this framework's applicability to other scientific DRL scenarios.
arXiv Detail & Related papers (2022-02-22T20:44:04Z) - Optimization-Inspired Learning with Architecture Augmentations and
Control Mechanisms for Low-Level Vision [74.9260745577362]
This paper proposes a unified optimization-inspired learning framework to aggregate Generative, Discriminative, and Corrective (GDC) principles.
We construct three propagative modules to effectively solve the optimization models with flexible combinations.
Experiments across varied low-level vision tasks validate the efficacy and adaptability of GDC.
arXiv Detail & Related papers (2020-12-10T03:24:53Z) - Integrating Distributed Architectures in Highly Modular RL Libraries [4.297070083645049]
Most popular reinforcement learning libraries advocate for highly modular agent composability.
We propose a versatile approach that allows the definition of RL agents at different scales through independent reusable components.
arXiv Detail & Related papers (2020-07-06T10:22:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.