Covariance Density Neural Networks
- URL: http://arxiv.org/abs/2505.11139v1
- Date: Fri, 16 May 2025 11:38:13 GMT
- Title: Covariance Density Neural Networks
- Authors: Om Roy, Yashar Moshfeghi, Keith Smith,
- Abstract summary: Graph neural networks have re-defined how we model and predict on network data.<n>There lacks a consensus on choosing the correct underlying graph structure on which to model signals.<n>We show that our model can achieve strong performance in subject-independent Brain Computer Interface EEG motor imagery classification.
- Score: 5.4141465747474475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks have re-defined how we model and predict on network data but there lacks a consensus on choosing the correct underlying graph structure on which to model signals. CoVariance Neural Networks (VNN) address this issue by using the sample covariance matrix as a Graph Shift Operator (GSO). Here, we improve on the performance of VNNs by constructing a Density Matrix where we consider the sample Covariance matrix as a quasi-Hamiltonian of the system in the space of random variables. Crucially, using this density matrix as the GSO allows components of the data to be extracted at different scales, allowing enhanced discriminability and performance. We show that this approach allows explicit control of the stability-discriminability trade-off of the network, provides enhanced robustness to noise compared to VNNs, and outperforms them in useful real-life applications where the underlying covariance matrix is informative. In particular, we show that our model can achieve strong performance in subject-independent Brain Computer Interface EEG motor imagery classification, outperforming EEGnet while being faster. This shows how covariance density neural networks provide a basis for the notoriously difficult task of transferability of BCIs when evaluated on unseen individuals.
Related papers
- Training Graph Neural Networks Using Non-Robust Samples [2.1937382384136637]
Graph Neural Networks (GNNs) are highly effective neural networks for processing graph -- structured data.<n>GNNs leverage both the graph structure, which represents the relationships between data points, and the feature matrix of the data to optimize their feature representation.<n>This paper proposes a novel method for selecting noise-sensitive training samples from the original training set to construct a smaller yet more effective training set for model training.
arXiv Detail & Related papers (2024-12-19T11:10:48Z) - Sparse Covariance Neural Networks [15.616852692528594]
We show that Sparse coVariance Neural Networks (S-VNNs) are more stable than nominal VNNs.
We show an improved task performance, stability, and computational efficiency of S-VNNs compared with nominal VNNs.
arXiv Detail & Related papers (2024-10-02T15:37:12Z) - Scalable and Consistent Graph Neural Networks for Distributed Mesh-based Data-driven Modeling [0.0]
This work develops a distributed graph neural network (GNN) methodology for mesh-based modeling applications.
consistency refers to the fact that a GNN trained and evaluated on one rank (one large graph) is arithmetically equivalent to evaluations on multiple ranks (a partitioned graph)
It is shown how the NekRS mesh partitioning can be linked to the distributed GNN training and inference routines, resulting in a scalable mesh-based data-driven modeling workflow.
arXiv Detail & Related papers (2024-10-02T15:22:27Z) - Neural Tangent Kernels Motivate Graph Neural Networks with
Cross-Covariance Graphs [94.44374472696272]
We investigate NTKs and alignment in the context of graph neural networks (GNNs)
Our results establish the theoretical guarantees on the optimality of the alignment for a two-layer GNN.
These guarantees are characterized by the graph shift operator being a function of the cross-covariance between the input and the output data.
arXiv Detail & Related papers (2023-10-16T19:54:21Z) - coVariance Neural Networks [119.45320143101381]
Graph neural networks (GNN) are an effective framework that exploit inter-relationships within graph-structured data for learning.
We propose a GNN architecture, called coVariance neural network (VNN), that operates on sample covariance matrices as graphs.
We show that VNN performance is indeed more stable than PCA-based statistical approaches.
arXiv Detail & Related papers (2022-05-31T15:04:43Z) - Optimising for Interpretability: Convolutional Dynamic Alignment
Networks [108.83345790813445]
We introduce a new family of neural network models called Convolutional Dynamic Alignment Networks (CoDA Nets)
Their core building blocks are Dynamic Alignment Units (DAUs), which are optimised to transform their inputs with dynamically computed weight vectors that align with task-relevant patterns.
CoDA Nets model the classification prediction through a series of input-dependent linear transformations, allowing for linear decomposition of the output into individual input contributions.
arXiv Detail & Related papers (2021-09-27T12:39:46Z) - Discriminability of Single-Layer Graph Neural Networks [172.5042368548269]
Graph neural networks (GNNs) have exhibited promising performance on a wide range of problems.
We focus on the property of discriminability and establish conditions under which the inclusion of pointwise nonlinearities to a stable graph filter bank leads to an increased discriminative capacity for high-eigenvalue content.
arXiv Detail & Related papers (2020-10-17T18:52:34Z) - Ensembles of Spiking Neural Networks [0.3007949058551534]
This paper demonstrates how to construct ensembles of spiking neural networks producing state-of-the-art results.
We achieve classification accuracies of 98.71%, 100.0%, and 99.09%, on the MNIST, NMNIST and DVS Gesture datasets respectively.
We formalize spiking neural networks as GLM predictors, identifying a suitable representation for their target domain.
arXiv Detail & Related papers (2020-10-15T17:45:18Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.