Multi-Modal Multi-Task (M3T) Federated Foundation Models for Embodied AI: Potentials and Challenges for Edge Integration
- URL: http://arxiv.org/abs/2505.11191v1
- Date: Fri, 16 May 2025 12:49:36 GMT
- Title: Multi-Modal Multi-Task (M3T) Federated Foundation Models for Embodied AI: Potentials and Challenges for Edge Integration
- Authors: Kasra Borazjani, Payam Abdisarabshali, Fardis Nadimi, Naji Khosravan, Minghui Liwang, Xianbin Wang, Yiguang Hong, Seyyedali Hosseinalipour,
- Abstract summary: We introduce Federated Foundation Models (FFMs) for embodied AI.<n>We collect critical deployment dimensions of FFMs in embodied AI ecosystems under a unified framework.<n>We identify concrete challenges and envision actionable research directions.
- Score: 16.914582808898505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As embodied AI systems become increasingly multi-modal, personalized, and interactive, they must learn effectively from diverse sensory inputs, adapt continually to user preferences, and operate safely under resource and privacy constraints. These challenges expose a pressing need for machine learning models capable of swift, context-aware adaptation while balancing model generalization and personalization. Here, two methods emerge as suitable candidates, each offering parts of these capabilities: Foundation Models (FMs) provide a pathway toward generalization across tasks and modalities, whereas Federated Learning (FL) offers the infrastructure for distributed, privacy-preserving model updates and user-level model personalization. However, when used in isolation, each of these approaches falls short of meeting the complex and diverse capability requirements of real-world embodied environments. In this vision paper, we introduce Federated Foundation Models (FFMs) for embodied AI, a new paradigm that unifies the strengths of multi-modal multi-task (M3T) FMs with the privacy-preserving distributed nature of FL, enabling intelligent systems at the wireless edge. We collect critical deployment dimensions of FFMs in embodied AI ecosystems under a unified framework, which we name "EMBODY": Embodiment heterogeneity, Modality richness and imbalance, Bandwidth and compute constraints, On-device continual learning, Distributed control and autonomy, and Yielding safety, privacy, and personalization. For each, we identify concrete challenges and envision actionable research directions. We also present an evaluation framework for deploying FFMs in embodied AI systems, along with the associated trade-offs.
Related papers
- Multi-Modal Multi-Task Federated Foundation Models for Next-Generation Extended Reality Systems: Towards Privacy-Preserving Distributed Intelligence in AR/VR/MR [12.109032063788417]
We envision that multi-modal multi-task (M3T) federated foundation models (FedFMs) can offer transformative capabilities for XR systems.<n>We present a modular architecture for FedFMs, which entails different coordination paradigms for model training and aggregations.<n>This perspective aims to chart the technical and conceptual foundations for context-aware privacy-preserving intelligence in the next generation of XR systems.
arXiv Detail & Related papers (2025-06-06T02:23:42Z) - Not All Clients Are Equal: Personalized Federated Learning on Heterogeneous Multi-Modal Clients [52.14230635007546]
Foundation models have shown remarkable capabilities across diverse multi-modal tasks, but their centralized training raises privacy concerns and induces high transmission costs.<n>For the growing demand for personalizing AI models for different user purposes, personalized federated learning (PFL) has emerged.<n>PFL allows each client to leverage the knowledge of other clients for further adaptation to individual user preferences, again without the need to share data.
arXiv Detail & Related papers (2025-05-20T09:17:07Z) - FedPref: Federated Learning Across Heterogeneous Multi-objective Preferences [2.519319150166215]
Federated Learning (FL) is a distributed machine learning strategy developed for settings where training data is owned by distributed devices and cannot be shared.<n>The application of FL to real-world settings brings additional challenges associated with heterogeneity between participants.<n>We propose FedPref, a first algorithm designed to facilitate personalised FL in this setting.
arXiv Detail & Related papers (2025-01-23T12:12:59Z) - FedPAE: Peer-Adaptive Ensemble Learning for Asynchronous and Model-Heterogeneous Federated Learning [9.084674176224109]
Federated learning (FL) enables multiple clients with distributed data sources to collaboratively train a shared model without compromising data privacy.
We introduce Federated Peer-Adaptive Ensemble Learning (FedPAE), a fully decentralized pFL algorithm that supports model heterogeneity and asynchronous learning.
Our approach utilizes a peer-to-peer model sharing mechanism and ensemble selection to achieve a more refined balance between local and global information.
arXiv Detail & Related papers (2024-10-17T22:47:19Z) - FedMoE: Personalized Federated Learning via Heterogeneous Mixture of Experts [4.412721048192925]
We present FedMoE, the efficient personalized Federated Learning framework to address data heterogeneity.
FedMoE is composed of two fine-tuning stages. In the first stage, FedMoE simplifies the problem by conducting a search based on observed activation patterns.
In the second stage, these submodels are distributed to clients for further training and returned for server aggregating.
arXiv Detail & Related papers (2024-08-21T03:16:12Z) - Backpropagation-Free Multi-modal On-Device Model Adaptation via Cloud-Device Collaboration [37.456185990843515]
We introduce a Universal On-Device Multi-modal Model Adaptation Framework.
The framework features the Fast Domain Adaptor (FDA) hosted in the cloud, providing tailored parameters for the Lightweight Multi-modal Model on devices.
Our contributions represent a pioneering solution for on-Device Multi-modal Model Adaptation (DMMA)
arXiv Detail & Related papers (2024-05-21T14:42:18Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
Large language models (LLMs) have driven profound transformations in wireless networks.<n>Within wireless environments, the training of LLMs faces significant challenges related to security and privacy.<n>This paper presents a systematic analysis of the training stages of LLMs in wireless networks, including pre-training, instruction tuning, and alignment tuning.
arXiv Detail & Related papers (2024-04-20T02:30:21Z) - FedP3: Federated Personalized and Privacy-friendly Network Pruning under Model Heterogeneity [82.5448598805968]
We present an effective and adaptable federated framework FedP3, representing Federated Personalized and Privacy-friendly network Pruning.
We offer a theoretical interpretation of FedP3 and its locally differential-private variant, DP-FedP3, and theoretically validate their efficiencies.
arXiv Detail & Related papers (2024-04-15T14:14:05Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - Delving into Multi-modal Multi-task Foundation Models for Road Scene Understanding: From Learning Paradigm Perspectives [56.2139730920855]
We present a systematic analysis of MM-VUFMs specifically designed for road scenes.
Our objective is to provide a comprehensive overview of common practices, referring to task-specific models, unified multi-modal models, unified multi-task models, and foundation model prompting techniques.
We provide insights into key challenges and future trends, such as closed-loop driving systems, interpretability, embodied driving agents, and world models.
arXiv Detail & Related papers (2024-02-05T12:47:09Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
Vision foundation models (VFMs) serve as potent building blocks for a wide range of AI applications.
The scarcity of comprehensive training data, the need for multi-sensor integration, and the diverse task-specific architectures pose significant obstacles to the development of VFMs.
This paper delves into the critical challenge of forging VFMs tailored specifically for autonomous driving, while also outlining future directions.
arXiv Detail & Related papers (2024-01-16T01:57:24Z) - NExT-GPT: Any-to-Any Multimodal LLM [75.5656492989924]
We present an end-to-end general-purpose any-to-any MM-LLM system, NExT-GPT.
We connect an LLM with multimodal adaptors and different diffusion decoders, enabling NExT-GPT to perceive inputs and generate outputs in arbitrary combinations of text, images, videos, and audio.
We introduce a modality-switching instruction tuning (MosIT) and manually curate a high-quality dataset for MosIT, based on which NExT-GPT is empowered with complex cross-modal semantic understanding and content generation.
arXiv Detail & Related papers (2023-09-11T15:02:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.