NoPE: The Counting Power of Transformers with No Positional Encodings
- URL: http://arxiv.org/abs/2505.11199v1
- Date: Fri, 16 May 2025 12:56:59 GMT
- Title: NoPE: The Counting Power of Transformers with No Positional Encodings
- Authors: Chris Köcher, Alexander Kozachinskiy, Anthony Widjaja Lin, Marco Sälzer, Georg Zetzsche,
- Abstract summary: NoPE-transformers with unique hard attention mechanisms were recently shown to only be able to express regular languages.<n>This paper shows that, with average hard attention mechanisms, NoPE-transformers are still surprisingly expressive.
- Score: 41.364418162255184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Positional Encodings (PEs) seem to be indispensable for ensuring expressiveness of transformers; without them attention transformers reduce to a bag-of-word model. NoPE-transformers (i.e. with No PEs) with unique hard attention mechanisms were very recently shown to only be able to express regular languages, i.e., with limited counting ability. This paper shows that, with average hard attention mechanisms, NoPE-transformers are still surprisingly expressive: they can express counting languages corresponding to nonnegative integer solutions to multivariate polynomial equations (i.e. Diophantine equations), reasoning about which is well-known to be undecidable. In fact, we provide a precise characterization of languages expressible by Average Hard Attention NoPE-Transformers (NoPE-AHATs): they correspond precisely to what we call \emph{semi-algebraic sets}, i.e., finite unions of sets of nonnegative integer solutions to systems of multivariate polynomial inequations. We obtain several interesting consequences of our characterization. Firstly, NoPE-transformers can express counting properties that are far more complex than established models like simplified counter machines and Petri nets, but cannot express a very simple counting property of PARITY. Secondly, the problem of analyzing NoPE-transformers is undecidable, e.g., whether a given NoPE transformer classifies all input strings in one class. To complement our results, we exhibit a counting language that is not expressible by average hard attention transformers even with arbitrary PEs but is expressible in the circuit complexity class TC$^0$, answering an open problem.
Related papers
- PaTH Attention: Position Encoding via Accumulating Householder Transformations [56.32365080761523]
PaTH is a flexible data-dependent position encoding scheme based on accumulated products of Householder transformations.<n>We derive an efficient parallel algorithm for training through exploiting a compact representation of products of Householder matrices.
arXiv Detail & Related papers (2025-05-22T08:36:09Z) - Extracting Finite State Machines from Transformers [0.3069335774032178]
We investigate the trainability of transformers trained on regular languages from a mechanistic interpretability perspective.
We empirically find tighter lower bounds on the trainability of transformers, when a finite number of symbols determine the state.
Our mechanistic insight allows us to characterise the regular languages a one-layer transformer can learn with good length generalisation.
arXiv Detail & Related papers (2024-10-08T13:43:50Z) - Transformers are Efficient Compilers, Provably [11.459397066286822]
Transformer-based large language models (LLMs) have demonstrated surprisingly robust performance across a wide range of language-related tasks.<n>In this paper, we take the first steps towards a formal investigation of using transformers as compilers from an expressive power perspective.<n>We introduce a representative programming language, Mini-Husky, which encapsulates key features of modern C-like languages.
arXiv Detail & Related papers (2024-10-07T20:31:13Z) - Length Generalization of Causal Transformers without Position Encoding [59.802708262402824]
Generalizing to longer sentences is important for recent Transformer-based language models.
We study the length generalization property of Transformers without position encodings.
We find that although NoPE can extend to sequences longer than the commonly used explicit position encodings, it still has a limited context length.
arXiv Detail & Related papers (2024-04-18T14:38:32Z) - The Expressive Power of Transformers with Chain of Thought [29.839710738657203]
In practice, transformers can be improved by allowing them to use a "chain of thought" or "scratchpad"
We show that the answer is yes, but the amount of increase depends crucially on the amount of intermediate generation.
Our results also imply that linear steps keep transformer decoders within context-sensitive languages.
arXiv Detail & Related papers (2023-10-11T22:35:18Z) - Attention Is Not All You Need Anymore [3.9693969407364427]
We propose a family of drop-in replacements for the self-attention mechanism in the Transformer.
Experimental results show that replacing the self-attention mechanism with the SHE evidently improves the performance of the Transformer.
The proposed Extractors have the potential or are able to run faster than the self-attention mechanism.
arXiv Detail & Related papers (2023-08-15T09:24:38Z) - The Impact of Positional Encoding on Length Generalization in
Transformers [50.48278691801413]
We compare the length generalization performance of decoder-only Transformers with five different position encoding approaches.
Our findings reveal that the most commonly used positional encoding methods, such as ALiBi, Rotary, and APE, are not well suited for length generalization in downstream tasks.
arXiv Detail & Related papers (2023-05-31T00:29:55Z) - Your Transformer May Not be as Powerful as You Expect [88.11364619182773]
We mathematically analyze the power of RPE-based Transformers regarding whether the model is capable of approximating any continuous sequence-to-sequence functions.
We present a negative result by showing there exist continuous sequence-to-sequence functions that RPE-based Transformers cannot approximate no matter how deep and wide the neural network is.
We develop a novel attention module, called Universal RPE-based (URPE) Attention, which satisfies the conditions.
arXiv Detail & Related papers (2022-05-26T14:51:30Z) - CoPE: Conditional image generation using Polynomial Expansions [50.67390290190874]
We introduce a general framework, called CoPE, that enables an expansion of two input variables and captures their auto- and cross-correlations.
CoPE is evaluated in five tasks (class-generation, inverse problems, edges-to-image translation, image-to-image translation, attribute-guided generation) involving eight datasets.
The thorough evaluation suggests that CoPE can be useful for tackling diverse conditional generation tasks.
arXiv Detail & Related papers (2021-04-11T19:02:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.