Sample Efficient Reinforcement Learning via Large Vision Language Model Distillation
- URL: http://arxiv.org/abs/2505.11221v1
- Date: Fri, 16 May 2025 13:15:54 GMT
- Title: Sample Efficient Reinforcement Learning via Large Vision Language Model Distillation
- Authors: Donghoon Lee, Tung M. Luu, Younghwan Lee, Chang D. Yoo,
- Abstract summary: We introduce LVLM to Policy (LVLM2P), a framework that distills knowledge from large vision-language models (LVLM) into more efficientReinforcement Learning agents.<n>Our approach leverages the LVLM as a teacher, providing instructional actions based on trajectories collected by the RL agent.<n>We show that LVLM2P significantly enhances the sample efficiency of baseline RL algorithms.
- Score: 19.48826538310603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research highlights the potential of multimodal foundation models in tackling complex decision-making challenges. However, their large parameters make real-world deployment resource-intensive and often impractical for constrained systems. Reinforcement learning (RL) shows promise for task-specific agents but suffers from high sample complexity, limiting practical applications. To address these challenges, we introduce LVLM to Policy (LVLM2P), a novel framework that distills knowledge from large vision-language models (LVLM) into more efficient RL agents. Our approach leverages the LVLM as a teacher, providing instructional actions based on trajectories collected by the RL agent, which helps reduce less meaningful exploration in the early stages of learning, thereby significantly accelerating the agent's learning progress. Additionally, by leveraging the LVLM to suggest actions directly from visual observations, we eliminate the need for manual textual descriptors of the environment, enhancing applicability across diverse tasks. Experiments show that LVLM2P significantly enhances the sample efficiency of baseline RL algorithms.
Related papers
- Curriculum Reinforcement Learning from Easy to Hard Tasks Improves LLM Reasoning [52.32193550674408]
We aim to improve the reasoning capabilities of language models via reinforcement learning (RL)<n>We propose to schedule tasks from easy to hard (E2H), allowing LLMs to build reasoning skills gradually.<n>E2H Reasoner significantly improves the reasoning ability of small LLMs (1.5B to 3B)
arXiv Detail & Related papers (2025-06-07T02:41:54Z) - Planning without Search: Refining Frontier LLMs with Offline Goal-Conditioned RL [62.984693936073974]
Large language models (LLMs) excel in tasks like question answering and dialogue.<n>Complex tasks requiring interaction, such as negotiation and persuasion, require additional long-horizon reasoning and planning.<n>We propose a novel approach that uses goal-conditioned value functions to guide the reasoning of LLM agents.
arXiv Detail & Related papers (2025-05-23T16:51:54Z) - Toward Efficient Exploration by Large Language Model Agents [14.712532175418884]
Large language models (LLMs) can be used to explicitly implement an existing reinforcement learning algorithm.<n>We show how our LLM-based implementation of a known, data-efficient RL algorithm can be considerably more effective in natural language tasks.
arXiv Detail & Related papers (2025-04-29T17:59:48Z) - Reasoning Under 1 Billion: Memory-Augmented Reinforcement Learning for Large Language Models [53.4530106173067]
Large language models (LLMs) with reinforcement learning (RL) have shown promising improvements in complex reasoning tasks.<n>RL remains challenging for tiny LLMs with 1 billion parameters or fewer because they lack the necessary pretraining strength to explore effectively.<n>This work introduces a novel intrinsic motivation approach that leverages episodic memory to address this challenge.
arXiv Detail & Related papers (2025-04-03T04:46:17Z) - Option Discovery Using LLM-guided Semantic Hierarchical Reinforcement Learning [16.654435148168172]
Large Language Models (LLMs) have shown remarkable promise in reasoning and decision-making.<n>We propose an LLM-guided hierarchical RL framework, termed LDSC, to enhance sample efficiency, generalization, and multi-task adaptability.
arXiv Detail & Related papers (2025-03-24T15:49:56Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.<n>Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.<n>We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
Large language models (LLMs) have recently emerged as powerful general-purpose tools.
We propose treating LLMs as prior action distributions and integrating them into RL frameworks.
We show that incorporating LLM-based action priors significantly reduces exploration and complexity optimization.
arXiv Detail & Related papers (2024-10-10T13:54:11Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Extracting Heuristics from Large Language Models for Reward Shaping in Reinforcement Learning [28.077228879886402]
Reinforcement Learning (RL) suffers from sample inefficiency in reward domains, and the problem is further pronounced in case of transitions.
To improve the sample efficiency, reward shaping is a well-studied approach to introduce intrinsic rewards that can help the RL agent converge to an optimal policy faster.
arXiv Detail & Related papers (2024-05-24T03:53:57Z) - Reinforcement Learning Problem Solving with Large Language Models [0.0]
Large Language Models (LLMs) have an extensive amount of world knowledge, and this has enabled their application in various domains to improve the performance of Natural Language Processing (NLP) tasks.
This has also facilitated a more accessible paradigm of conversation-based interactions between humans and AI systems to solve intended problems.
We show the practicality of our approach through two detailed case studies for "Research Scientist" and "Legal Matter Intake"
arXiv Detail & Related papers (2024-04-29T12:16:08Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.