Temporal fine-tuning for early risk detection
- URL: http://arxiv.org/abs/2505.11280v1
- Date: Fri, 16 May 2025 14:17:03 GMT
- Title: Temporal fine-tuning for early risk detection
- Authors: Horacio Thompson, Esaú Villatoro-Tello, Manuel Montes-y-Gómez, Marcelo Errecalde,
- Abstract summary: Early Risk Detection (ERD) on the Web aims to identify promptly users facing social and health issues.<n>Standard classification metrics may not suffice, resorting to specific metrics that explicitly consider precision and delay.<n>We propose a completely different strategy, temporal fine-tuning, which allows tuning transformer-based models by explicitly incorporating time.
- Score: 3.8486074790756506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early Risk Detection (ERD) on the Web aims to identify promptly users facing social and health issues. Users are analyzed post-by-post, and it is necessary to guarantee correct and quick answers, which is particularly challenging in critical scenarios. ERD involves optimizing classification precision and minimizing detection delay. Standard classification metrics may not suffice, resorting to specific metrics such as ERDE(theta) that explicitly consider precision and delay. The current research focuses on applying a multi-objective approach, prioritizing classification performance and establishing a separate criterion for decision time. In this work, we propose a completely different strategy, temporal fine-tuning, which allows tuning transformer-based models by explicitly incorporating time within the learning process. Our method allows us to analyze complete user post histories, tune models considering different contexts, and evaluate training performance using temporal metrics. We evaluated our proposal in the depression and eating disorders tasks for the Spanish language, achieving competitive results compared to the best models of MentalRiskES 2023. We found that temporal fine-tuning optimized decisions considering context and time progress. In this way, by properly taking advantage of the power of transformers, it is possible to address ERD by combining precision and speed as a single objective.
Related papers
- Conformal Information Pursuit for Interactively Guiding Large Language Models [64.39770942422288]
This paper explores sequential querying strategies that aim to minimize the expected number of queries.<n>One such strategy is Information Pursuit (IP), a greedy algorithm that at each iteration selects the query that maximizes information gain or equivalently minimizes uncertainty.<n>We propose Conformal Information Pursuit (C-IP), an alternative approach to sequential information gain based on conformal prediction sets.
arXiv Detail & Related papers (2025-07-04T03:55:39Z) - Orthogonal Soft Pruning for Efficient Class Unlearning [26.76186024947296]
We propose a class-aware soft pruning framework to achieve rapid and precise forgetting with millisecond-level response times.<n>Our method decorrelates convolutional filters and disentangles feature representations, while efficiently identifying class-specific channels.
arXiv Detail & Related papers (2025-06-24T09:52:04Z) - A Principled Approach to Randomized Selection under Uncertainty: Applications to Peer Review and Grant Funding [68.43987626137512]
We propose a principled framework for randomized decision-making based on interval estimates of the quality of each item.<n>We introduce MERIT, an optimization-based method that maximizes the worst-case expected number of top candidates selected.<n>We prove that MERIT satisfies desirable axiomatic properties not guaranteed by existing approaches.
arXiv Detail & Related papers (2025-06-23T19:59:30Z) - Online Decision-Focused Learning [63.83903681295497]
Decision-focused learning (DFL) is an increasingly popular paradigm for training predictive models whose outputs are used in decision-making tasks.<n>We investigate DFL in dynamic environments where the objective function does not evolve over time.<n>We establish bounds on the expected dynamic regret, both when decision space is a simplex and when it is a general bounded convex polytope.
arXiv Detail & Related papers (2025-05-19T10:40:30Z) - Fast or Better? Balancing Accuracy and Cost in Retrieval-Augmented Generation with Flexible User Control [52.405085773954596]
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to mitigate large language model hallucinations.<n>Existing RAG frameworks often apply retrieval indiscriminately,leading to inefficiencies-over-retrieving.<n>We introduce a novel user-controllable RAG framework that enables dynamic adjustment of the accuracy-cost trade-off.
arXiv Detail & Related papers (2025-02-17T18:56:20Z) - A Time-Aware Approach to Early Detection of Anorexia: UNSL at eRisk 2024 [0.9208007322096532]
The eRisk laboratory aims to address issues related to early risk detection on the Web.
Our research group solved Task 2 by defining a CPI+DMC approach, addressing both objectives independently, and a time-aware approach.
We achieved outstanding results for the ERDE50 metric and ranking-based metrics, demonstrating consistency in solving ERD problems.
arXiv Detail & Related papers (2024-10-23T15:30:37Z) - Truncating Trajectories in Monte Carlo Policy Evaluation: an Adaptive Approach [51.76826149868971]
Policy evaluation via Monte Carlo simulation is at the core of many MC Reinforcement Learning (RL) algorithms.
We propose as a quality index a surrogate of the mean squared error of a return estimator that uses trajectories of different lengths.
We present an adaptive algorithm called Robust and Iterative Data collection strategy Optimization (RIDO)
arXiv Detail & Related papers (2024-10-17T11:47:56Z) - Adaptive Retention & Correction: Test-Time Training for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.<n>We name our approach Adaptive Retention & Correction (ARC)<n>ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Adaptive scheduling for adaptive sampling in POS taggers construction [0.27624021966289597]
We introduce an adaptive scheduling for adaptive sampling as a novel way of machine learning in the construction of part-of-speech taggers.
We analyze the shape of the learning curve geometrically in conjunction with a functional model to increase or decrease it at any time.
We also improve the robustness of sampling by paying greater attention to those regions of the training data base subject to a temporary inflation in performance.
arXiv Detail & Related papers (2024-02-04T15:02:17Z) - Evolutionary Optimization of High-Coverage Budgeted Classifiers [1.7767466724342065]
Budgeted multi-feature classifiers (MSC) process inputs through a sequence of partial feature acquisition and evaluation steps.
This paper proposes a problem-specific MSC that incorporates a terminal reject option for indecisive predictions.
The algorithm's design emphasizes efficiency while respecting a notion of aggregated performance via a uniqueization.
arXiv Detail & Related papers (2021-10-25T16:03:07Z) - Minimum-Delay Adaptation in Non-Stationary Reinforcement Learning via
Online High-Confidence Change-Point Detection [7.685002911021767]
We introduce an algorithm that efficiently learns policies in non-stationary environments.
It analyzes a possibly infinite stream of data and computes, in real-time, high-confidence change-point detection statistics.
We show that (i) this algorithm minimizes the delay until unforeseen changes to a context are detected, thereby allowing for rapid responses.
arXiv Detail & Related papers (2021-05-20T01:57:52Z) - AdaS: Adaptive Scheduling of Stochastic Gradients [50.80697760166045]
We introduce the notions of textit"knowledge gain" and textit"mapping condition" and propose a new algorithm called Adaptive Scheduling (AdaS)
Experimentation reveals that, using the derived metrics, AdaS exhibits: (a) faster convergence and superior generalization over existing adaptive learning methods; and (b) lack of dependence on a validation set to determine when to stop training.
arXiv Detail & Related papers (2020-06-11T16:36:31Z) - Early Classification of Time Series. Cost-based Optimization Criterion
and Algorithms [0.0]
In this paper, we put forward a new optimization criterion which takes into account both the cost of misclassification and the cost of delaying the decision.
We derived a family of non-myopic algorithms which try to anticipate the expected future gain in information in balance with the cost of waiting.
arXiv Detail & Related papers (2020-05-20T10:08:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.