Evolutionary Optimization of High-Coverage Budgeted Classifiers
- URL: http://arxiv.org/abs/2110.13067v1
- Date: Mon, 25 Oct 2021 16:03:07 GMT
- Title: Evolutionary Optimization of High-Coverage Budgeted Classifiers
- Authors: Nolan H. Hamilton and Errin W. Fulp
- Abstract summary: Budgeted multi-feature classifiers (MSC) process inputs through a sequence of partial feature acquisition and evaluation steps.
This paper proposes a problem-specific MSC that incorporates a terminal reject option for indecisive predictions.
The algorithm's design emphasizes efficiency while respecting a notion of aggregated performance via a uniqueization.
- Score: 1.7767466724342065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classifiers are often utilized in time-constrained settings where labels must
be assigned to inputs quickly. To address these scenarios, budgeted multi-stage
classifiers (MSC) process inputs through a sequence of partial feature
acquisition and evaluation steps with early-exit options until a confident
prediction can be made. This allows for fast evaluation that can prevent
expensive, unnecessary feature acquisition in time-critical instances. However,
performance of MSCs is highly sensitive to several design aspects -- making
optimization of these systems an important but difficult problem.
To approximate an initially intractable combinatorial problem, current
approaches to MSC configuration rely on well-behaved surrogate loss functions
accounting for two primary objectives (processing cost, error). These
approaches have proven useful in many scenarios but are limited by analytic
constraints (convexity, smoothness, etc.) and do not manage additional
performance objectives. Notably, such methods do not explicitly account for an
important aspect of real-time detection systems -- the ratio of "accepted"
predictions satisfying some confidence criterion imposed by a risk-averse
monitor.
This paper proposes a problem-specific genetic algorithm, EMSCO, that
incorporates a terminal reject option for indecisive predictions and treats MSC
design as an evolutionary optimization problem with distinct objectives
(accuracy, cost, coverage). The algorithm's design emphasizes Pareto efficiency
while respecting a notion of aggregated performance via a unique scalarization.
Experiments are conducted to demonstrate EMSCO's ability to find global optima
in a variety of Theta(k^n) solution spaces, and multiple experiments show EMSCO
is competitive with alternative budgeted approaches.
Related papers
- An Efficient Approach for Solving Expensive Constrained Multiobjective Optimization Problems [0.0]
An efficient probabilistic selection based constrained multi-objective EA is proposed, referred to as PSCMOEA.
It comprises novel elements such as (a) an adaptive search bound identification scheme based on the feasibility and convergence status of evaluated solutions.
Numerical experiments are conducted on an extensive range of challenging constrained problems using low evaluation budgets to simulate ECMOPs.
arXiv Detail & Related papers (2024-05-22T02:32:58Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Bayesian Quality-Diversity approaches for constrained optimization
problems with mixed continuous, discrete and categorical variables [0.3626013617212667]
A new Quality-Diversity methodology based on mixed variables is proposed in the context of limited simulation budget.
The proposed approach provides valuable trade-offs for decision-markers for complex system design.
arXiv Detail & Related papers (2023-09-11T14:29:47Z) - Budgeted Classification with Rejection: An Evolutionary Method with
Multiple Objectives [0.0]
Budgeted, sequential classifiers (BSCs) process inputs through a sequence of partial feature acquisition and evaluation steps.
This allows for an efficient evaluation of inputs that prevents unneeded feature acquisition.
We propose a problem-specific genetic algorithm to build budgeted, sequential classifiers with confidence-based reject options.
arXiv Detail & Related papers (2022-05-01T22:05:16Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
We consider the problem of multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel uncertainty-aware search framework referred to as USeMO to efficiently select the sequence of inputs for evaluation.
arXiv Detail & Related papers (2022-04-12T16:50:48Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
We propose a generalization of conformal prediction to multiple learnable parameters.
We show that it achieves approximate valid population coverage and near-optimal efficiency within class.
Experiments show that our algorithm is able to learn valid prediction sets and improve the efficiency significantly.
arXiv Detail & Related papers (2022-02-22T18:37:23Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Early Classification of Time Series. Cost-based Optimization Criterion
and Algorithms [0.0]
In this paper, we put forward a new optimization criterion which takes into account both the cost of misclassification and the cost of delaying the decision.
We derived a family of non-myopic algorithms which try to anticipate the expected future gain in information in balance with the cost of waiting.
arXiv Detail & Related papers (2020-05-20T10:08:30Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
Simple algorithms have been shown to lead to good empirical results in many contexts.
Several works have pursued rigorous analytical justification for studying non optimization problems.
A key insight in these analyses is that perturbations play a critical role in allowing local descent algorithms.
arXiv Detail & Related papers (2020-03-31T16:54:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.