Bridging the Last Mile of Prediction: Enhancing Time Series Forecasting with Conditional Guided Flow Matching
- URL: http://arxiv.org/abs/2507.07192v2
- Date: Mon, 14 Jul 2025 03:33:58 GMT
- Title: Bridging the Last Mile of Prediction: Enhancing Time Series Forecasting with Conditional Guided Flow Matching
- Authors: Huibo Xu, Runlong Yu, Likang Wu, Xianquan Wang, Qi Liu,
- Abstract summary: Flow matching offers faster generation, higher-quality outputs, and greater flexibility.<n> Conditional Guided Flow Matching (CGFM) extends flow matching by incorporating the outputs of an auxiliary model.<n>For time series forecasting tasks, CGFM integrates historical data as conditions and guidance, constructs two-sided conditional probability paths, and uses a general affine path to expand the space of probability paths.
- Score: 9.465542901469815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models, a type of generative model, have shown promise in time series forecasting. But they face limitations like rigid source distributions and limited sampling paths, which hinder their performance. Flow matching offers faster generation, higher-quality outputs, and greater flexibility, while also possessing the ability to utilize valuable information from the prediction errors of prior models, which were previously inaccessible yet critically important. To address these challenges and fully unlock the untapped potential of flow matching, we propose Conditional Guided Flow Matching (CGFM). CGFM extends flow matching by incorporating the outputs of an auxiliary model, enabling a previously unattainable capability in the field: learning from the errors of the auxiliary model. For time series forecasting tasks, it integrates historical data as conditions and guidance, constructs two-sided conditional probability paths, and uses a general affine path to expand the space of probability paths, ultimately leading to improved predictions. Extensive experiments show that CGFM consistently enhances and outperforms state-of-the-art models, highlighting its effectiveness in advancing forecasting methods.
Related papers
- Elucidated Rolling Diffusion Models for Probabilistic Weather Forecasting [52.6508222408558]
We introduce Elucidated Rolling Diffusion Models (ERDM)<n>ERDM is the first framework to unify a rolling forecast structure with the principled, performant design of Elucidated Diffusion Models (EDM)<n>On 2D Navier-Stokes simulations and ERA5 global weather forecasting at 1.5circ resolution, ERDM consistently outperforms key diffusion-based baselines.
arXiv Detail & Related papers (2025-06-24T21:44:31Z) - Solving Inverse Problems with FLAIR [59.02385492199431]
Flow-based latent generative models are able to generate images with remarkable quality, even enabling text-to-image generation.<n>We present FLAIR, a novel training free variational framework that leverages flow-based generative models as a prior for inverse problems.<n>Results on standard imaging benchmarks demonstrate that FLAIR consistently outperforms existing diffusion- and flow-based methods in terms of reconstruction quality and sample diversity.
arXiv Detail & Related papers (2025-06-03T09:29:47Z) - PO-Flow: Flow-based Generative Models for Sampling Potential Outcomes and Counterfactuals [14.980992014519165]
PO-Flow is a novel continuous normalizing flow (CNF) framework for causal inference.<n>It provides a unified framework for individualized potential outcome prediction, counterfactual predictions, and uncertainty-aware density learning.<n>It consistently outperforms prior methods across a range of causal inference tasks.
arXiv Detail & Related papers (2025-05-21T22:02:48Z) - Series-to-Series Diffusion Bridge Model [8.590453584544386]
We present a comprehensive framework that encompasses most existing diffusion-based methods.
We propose a novel diffusion-based time series forecasting model, the Series-to-Series Diffusion Bridge Model ($mathrmS2DBM$)
Experimental results demonstrate that $mathrmS2DBM$ delivers superior performance in point-to-point forecasting.
arXiv Detail & Related papers (2024-11-07T07:37:34Z) - Flow Matching with Gaussian Process Priors for Probabilistic Time Series Forecasting [43.951394031702016]
We introduce TSFlow, a conditional flow matching (CFM) model for time series combining Gaussian processes, optimal transport paths, and data-dependent prior distributions.<n>We show that both conditionally and unconditionally trained models achieve competitive results across multiple forecasting benchmarks.
arXiv Detail & Related papers (2024-10-03T22:12:50Z) - Channel-aware Contrastive Conditional Diffusion for Multivariate Probabilistic Time Series Forecasting [19.383395337330082]
We propose a generic channel-aware Contrastive Conditional Diffusion model entitled CCDM.
The proposed CCDM can exhibit superior forecasting capability compared to current state-of-the-art diffusion forecasters.
arXiv Detail & Related papers (2024-10-03T03:13:15Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Counterfactual Explanations for Time Series Forecasting [14.03870816983583]
We formulate the novel problem of counterfactual generation for time series forecasting, and propose an algorithm, called ForecastCF.
ForecastCF solves the problem by applying gradient-based perturbations to the original time series.
Our results show that ForecastCF outperforms the baseline in terms of counterfactual validity and data manifold closeness.
arXiv Detail & Related papers (2023-10-12T08:51:59Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
Complex Event Recognition (CER) systems have become popular in the past two decades due to their ability to "instantly" detect patterns on real-time streams of events.
There is a lack of methods for forecasting when a pattern might occur before such an occurrence is actually detected by a CER engine.
We present a formal framework that attempts to address the issue of Complex Event Forecasting.
arXiv Detail & Related papers (2021-09-01T09:52:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.