論文の概要: Anti-aliasing of neural distortion effects via model fine tuning
- arxiv url: http://arxiv.org/abs/2505.11375v1
- Date: Fri, 16 May 2025 15:40:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:15.474016
- Title: Anti-aliasing of neural distortion effects via model fine tuning
- Title(参考訳): モデル微調整による神経歪み効果のアンチエイリアス化
- Authors: Alistair Carson, Alec Wright, Stefan Bilbao,
- Abstract要約: 本稿では,教師による微調整手法を用いて,ニューラルモデルにおけるエイリアスを低減する手法を提案する。
本手法は長期記憶ネットワーク(LSTM)と時間畳み込みネットワーク(TCN)のエイリアス化を著しく抑制することを示す。
- 参考スコア(独自算出の注目度): 4.751886527142779
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks have become ubiquitous with guitar distortion effects modelling in recent years. Despite their ability to yield perceptually convincing models, they are susceptible to frequency aliasing when driven by high frequency and high gain inputs. Nonlinear activation functions create both the desired harmonic distortion and unwanted aliasing distortion as the bandwidth of the signal is expanded beyond the Nyquist frequency. Here, we present a method for reducing aliasing in neural models via a teacher-student fine tuning approach, where the teacher is a pre-trained model with its weights frozen, and the student is a copy of this with learnable parameters. The student is fine-tuned against an aliasing-free dataset generated by passing sinusoids through the original model and removing non-harmonic components from the output spectra. Our results show that this method significantly suppresses aliasing for both long-short-term-memory networks (LSTM) and temporal convolutional networks (TCN). In the majority of our case studies, the reduction in aliasing was greater than that achieved by two times oversampling. One side-effect of the proposed method is that harmonic distortion components are also affected. This adverse effect was found to be model-dependent, with the LSTM models giving the best balance between anti-aliasing and preserving the perceived similarity to an analog reference device.
- Abstract(参考訳): 近年,ギターの歪み効果をモデル化するニューラルネットワークが普及している。
知覚的に説得力のあるモデルを生成する能力があるにもかかわらず、高周波数と高利得入力によって駆動される場合、周波数エイリアスの影響を受けやすい。
非線形活性化関数は、信号の帯域幅がニキスト周波数を超えて拡張されるにつれて、所望の調和歪みと不要なエイリアシング歪みの両方を生成する。
そこで本研究では,教師が学習可能なパラメータを持つ事前学習モデルであり,教師が学習可能なパラメータを持つモデルである,教師の微調整アプローチを用いて,ニューラルネットワークのエイリアスを低減する方法を提案する。
学生は、元のモデルを通して正弦波を通過させ、出力スペクトルから非調和成分を取り除いたエイリアスフリーデータセットに対して微調整される。
本手法は長期記憶ネットワーク (LSTM) と時間畳み込みネットワーク (TCN) の両方のエイリアスを著しく抑制することを示す。
今回のケーススタディの大部分では,2倍のオーバーサンプリングによりエイリアシングの減少が達成された。
提案手法の副作用の1つは、高調波歪み成分にも影響があることである。
この悪影響はモデルに依存しており、LSTMモデルはアンチエイリアスとアナログ参照装置と認識される類似性を維持するのに最適なバランスを与える。
関連論文リスト
- Resampling Filter Design for Multirate Neural Audio Effect Processing [9.149661171430257]
ニューラルネットワークの入力と出力における信号再サンプリングの利用を代替ソリューションとして検討する。
カイザー窓FIRフィルタを組み込んだ半帯域IIRフィルタを用いた2段設計により,従来提案されていたモデル調整手法に類似あるいは良好な結果が得られることを示す。
論文 参考訳(メタデータ) (2025-01-30T16:44:49Z) - On Disentangled Training for Nonlinear Transform in Learned Image Compression [59.66885464492666]
学習画像圧縮(lic)は,従来のコーデックに比べて高いレート歪み(R-D)性能を示した。
既存のlic法は、非線形変換の学習において、エネルギーのコンパクト化によって生じる緩やかな収束を見落としている。
非線形変換の訓練において, エネルギーの縮退を両立させる線形補助変換(AuxT)を提案する。
論文 参考訳(メタデータ) (2025-01-23T15:32:06Z) - DAT: Improving Adversarial Robustness via Generative Amplitude Mix-up in Frequency Domain [23.678658814438855]
敵の攻撃からディープニューラルネットワーク(DNN)を保護するために、敵の訓練(AT)が開発された。
近年の研究では、敵対的攻撃がサンプルの周波数スペクトルの位相内のパターンに不均等に影響を及ぼすことが示されている。
モデルの堅牢性向上と位相パターンの維持のトレードオフを改善するために, 最適化された逆振幅発生器 (AAG) を提案する。
論文 参考訳(メタデータ) (2024-10-16T07:18:36Z) - Differentiable Grey-box Modelling of Phaser Effects using Frame-based
Spectral Processing [21.053861381437827]
本研究は位相効果をモデル化するデジタル信号処理手法を提案する。
提案モデルでは,周波数領域に時間変化フィルタを実装するために,短いフレームで音声を処理する。
このモデルでは、解釈可能なパラメータと調整可能なパラメータを保持しながら、アナログ参照デバイスをエミュレートするように訓練できることが示される。
論文 参考訳(メタデータ) (2023-06-02T07:53:41Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - Effect of Batch Normalization on Noise Resistant Property of Deep
Learning Models [3.520496620951778]
モデルの重みに変化をもたらすアナログノイズの存在が、ディープラーニングモデルの性能劣化を引き起こすという懸念がある。
本研究では,一般的なバッチ正規化層がディープラーニングモデルの耐雑音性に及ぼす影響について検討した。
論文 参考訳(メタデータ) (2022-05-15T20:10:21Z) - Treatment Learning Causal Transformer for Noisy Image Classification [62.639851972495094]
本研究では,この2値情報「ノイズの存在」を画像分類タスクに組み込んで予測精度を向上させる。
因果的変動推定から動機付け,雑音画像分類のための頑健な特徴表現を潜在生成モデルを用いて推定するトランスフォーマーに基づくアーキテクチャを提案する。
また、パフォーマンスベンチマークのための幅広いノイズ要素を取り入れた、新しいノイズの多い画像データセットも作成する。
論文 参考訳(メタデータ) (2022-03-29T13:07:53Z) - Simpler is better: spectral regularization and up-sampling techniques
for variational autoencoders [1.2234742322758418]
ニューラルネットワークに基づく生成モデルのスペクトル挙動のキャラクタリゼーションは未解決のままである。
最近の研究は、生成的対向ネットワークと、実画像と生成画像の高周波の相違に重点を置いている。
変分オートエンコーダ(VAE)のための単純な2次元フーリエ変換に基づくスペクトル正規化損失を提案する。
論文 参考訳(メタデータ) (2022-01-19T11:49:57Z) - Unleashing the Power of Contrastive Self-Supervised Visual Models via
Contrast-Regularized Fine-Tuning [94.35586521144117]
コントラスト学習を微調整に適用することでさらにメリットが得られるか検討する。
本研究では,コントラスト正規化調律(core-tuning)を提案する。
論文 参考訳(メタデータ) (2021-02-12T16:31:24Z) - Learning Noise-Aware Encoder-Decoder from Noisy Labels by Alternating
Back-Propagation for Saliency Detection [54.98042023365694]
本稿では,ノイズを考慮したエンコーダ・デコーダ・フレームワークを提案する。
提案モデルはニューラルネットワークによってパラメータ化された2つのサブモデルから構成される。
論文 参考訳(メタデータ) (2020-07-23T18:47:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。