Potential failures of physics-informed machine learning in traffic flow modeling: theoretical and experimental analysis
- URL: http://arxiv.org/abs/2505.11491v1
- Date: Fri, 16 May 2025 17:55:06 GMT
- Title: Potential failures of physics-informed machine learning in traffic flow modeling: theoretical and experimental analysis
- Authors: Yuan-Zheng Lei, Yaobang Gong, Dianwei Chen, Yao Cheng, Xianfeng Terry Yang,
- Abstract summary: This study critically examines the performance of physics-informed machine learning (PIML) approaches for traffic flow modeling.<n> Experiments reveal that physical residuals can degrade the performance of LWR- and ARZ-based PIML models.<n>We identify the Courant-Friedrichs-Lewy (CFL) condition as a key indicator of dataset suitability for PIML.
- Score: 5.937203351551678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study critically examines the performance of physics-informed machine learning (PIML) approaches for traffic flow modeling, defining the failure of a PIML model as the scenario where it underperforms both its purely data-driven and purely physics-based counterparts. We analyze the loss landscape by perturbing trained models along the principal eigenvectors of the Hessian matrix and evaluating corresponding loss values. Our results suggest that physics residuals in PIML do not inherently hinder optimization, contrary to a commonly assumed failure cause. Instead, successful parameter updates require both ML and physics gradients to form acute angles with the quasi-true gradient and lie within a conical region. Given inaccuracies in both the physics models and the training data, satisfying this condition is often difficult. Experiments reveal that physical residuals can degrade the performance of LWR- and ARZ-based PIML models, especially under highly physics-driven settings. Moreover, sparse sampling and the use of temporally averaged traffic data can produce misleadingly small physics residuals that fail to capture actual physical dynamics, contributing to model failure. We also identify the Courant-Friedrichs-Lewy (CFL) condition as a key indicator of dataset suitability for PIML, where successful applications consistently adhere to this criterion. Lastly, we observe that higher-order models like ARZ tend to have larger error lower bounds than lower-order models like LWR, which is consistent with the experimental findings of existing studies.
Related papers
- Reconstructing Physics-Informed Machine Learning for Traffic Flow Modeling: a Multi-Gradient Descent and Pareto Learning Approach [5.937203351551678]
Physics-informed machine learning (PIML) is crucial in modern flow modeling.<n>This paper introduces a paradigm shift in PIML by reformulating the training process as a multi-objective optimization problem.
arXiv Detail & Related papers (2025-05-19T15:23:24Z) - A Theoretical Perspective: How to Prevent Model Collapse in Self-consuming Training Loops [55.07063067759609]
High-quality data is essential for training large generative models, yet the vast reservoir of real data available online has become nearly depleted.<n>Models increasingly generate their own data for further training, forming Self-consuming Training Loops (STLs)<n>Some models degrade or even collapse, while others successfully avoid these failures, leaving a significant gap in theoretical understanding.
arXiv Detail & Related papers (2025-02-26T06:18:13Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - Physics-Informed Deep Learning of Rate-and-State Fault Friction [0.0]
We develop a multi-network PINN for both the forward problem and for direct inversion of nonlinear fault friction parameters.
We present the computational PINN framework for strike-slip faults in 1D and 2D subject to rate-and-state friction.
We find that the network for the parameter inversion at the fault performs much better than the network for material displacements to which it is coupled.
arXiv Detail & Related papers (2023-12-14T23:53:25Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics.
Recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes.
We propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls.
arXiv Detail & Related papers (2023-10-30T18:43:21Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - A Physics Enhanced Residual Learning (PERL) Framework for Vehicle Trajectory Prediction [5.7215490229343535]
PERL integrates the strengths of physics-based and data-driven methods for traffic state prediction.
It preserves the interpretability inherent to physics-based models and has reduced data requirements.
PERL achieves better prediction with a small dataset, compared to the physics model, data-driven model, and PINN model.
arXiv Detail & Related papers (2023-09-26T21:41:45Z) - A physics-constrained machine learning method for mapping gapless land
surface temperature [6.735896406986559]
In this paper, a physics- ML model is proposed to generate gapless LST with physical meanings and high accuracy.
The light-boosting machine (LGBM) model, which uses only remote sensing data as gradient input serves as the pure ML model.
Compared with a pure physical method and pure ML methods, the PC-LGBM model improves the prediction accuracy and physical interpretability of LST.
arXiv Detail & Related papers (2023-07-03T01:44:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.