Deep Unrolled Meta-Learning for Multi-Coil and Multi-Modality MRI with Adaptive Optimization
- URL: http://arxiv.org/abs/2505.11518v1
- Date: Thu, 08 May 2025 04:47:12 GMT
- Title: Deep Unrolled Meta-Learning for Multi-Coil and Multi-Modality MRI with Adaptive Optimization
- Authors: Merham Fouladvand, Peuroly Batra,
- Abstract summary: We propose a unified deep meta-learning framework for accelerated magnetic resonance imaging (MRI)<n>We jointly address multi-coil reconstruction and cross-modality synthesis.<n>Our results show significant improvements in PSNR and over conventional supervised learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a unified deep meta-learning framework for accelerated magnetic resonance imaging (MRI) that jointly addresses multi-coil reconstruction and cross-modality synthesis. Motivated by the limitations of conventional methods in handling undersampled data and missing modalities, our approach unrolls a provably convergent optimization algorithm into a structured neural network architecture. Each phase of the network mimics a step of an adaptive forward-backward scheme with extrapolation, enabling the model to incorporate both data fidelity and nonconvex regularization in a principled manner. To enhance generalization across different acquisition settings, we integrate meta-learning, which enables the model to rapidly adapt to unseen sampling patterns and modality combinations using task-specific meta-knowledge. The proposed method is evaluated on the open source datasets, showing significant improvements in PSNR and SSIM over conventional supervised learning, especially under aggressive undersampling and domain shifts. Our results demonstrate the synergy of unrolled optimization, task-aware meta-learning, and modality fusion, offering a scalable and generalizable solution for real-world clinical MRI reconstruction.
Related papers
- Learning to Rebalance Multi-Modal Optimization by Adaptively Masking Subnetworks [13.065212096469537]
We propose a novel importance sampling-based, element-wise joint optimization method, called Adaptively Mask Subnetworks Considering Modal Significance(AMSS)
Specifically, we incorporate mutual information rates to determine the modal significance and employ non-uniform adaptive sampling to select foregroundworks from each modality for parameter updates.
Building upon theoretical insights, we further enhance the multi-modal mask subnetwork strategy using unbiased estimation, referred to as AMSS+.
arXiv Detail & Related papers (2024-04-12T09:22:24Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
This paper proposes a novel SSC framework - Adrial Modality Modulation Network (AMMNet)
AMMNet introduces two core modules: a cross-modal modulation enabling the interdependence of gradient flows between modalities, and a customized adversarial training scheme leveraging dynamic gradient competition.
Extensive experimental results demonstrate that AMMNet outperforms state-of-the-art SSC methods by a large margin.
arXiv Detail & Related papers (2024-03-12T11:48:49Z) - MCU-Net: A Multi-prior Collaborative Deep Unfolding Network with Gates-controlled Spatial Attention for Accelerated MR Image Reconstruction [9.441882492801174]
Deep unfolding networks (DUNs) have demonstrated significant potential in accelerating magnetic resonance imaging (MRI)
However, they often encounter high computational costs and slow convergence rates.
We propose a multi-prior collaborative DUN, termed MCU-Net, to address these limitations.
arXiv Detail & Related papers (2024-02-04T07:29:00Z) - A Meta-Learning Based Precoder Optimization Framework for Rate-Splitting
Multiple Access [53.191806757701215]
We propose the use of a meta-learning based precoder optimization framework to directly optimize the Rate-Splitting Multiple Access (RSMA) precoders with partial Channel State Information at the Transmitter (CSIT)
By exploiting the overfitting of the compact neural network to maximize the explicit Average Sum-Rate (ASR) expression, we effectively bypass the need for any other training data while minimizing the total running time.
Numerical results reveal that the meta-learning based solution achieves similar ASR performance to conventional precoder optimization in medium-scale scenarios, and significantly outperforms sub-optimal low complexity precoder algorithms in the large-scale
arXiv Detail & Related papers (2023-07-17T20:31:41Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Optimization-Based Deep learning methods for Magnetic Resonance Imaging
Reconstruction and Synthesis [0.0]
This dissertation aims to provide advanced nonsmooth variational models (Magnetic Resonance Image) MRI reconstruction, efficient learnable image reconstruction algorithms, and deep learning methods for MRI reconstruction and synthesis.
The first part introduces a novel based deep neural network whose architecture is inspired by proximal gradient descent for a variational model.
The second part is a substantial extension of the preliminary work in the first part by solving the calibration-free fast pMRI reconstruction problem in a discrete-time optimal framework.
The third part aims at developing a generalizable Magnetic Resonance Imaging (MRI) reconstruction method in the metalearning framework.
arXiv Detail & Related papers (2023-03-02T18:59:44Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
We introduce an efficient optimization-based meta-learning technique for large-scale neural field training.
We show how gradient re-scaling at meta-test time allows the learning of extremely high-quality neural fields.
Our framework is model-agnostic, intuitive, straightforward to implement, and shows significant reconstruction improvements for a wide range of signals.
arXiv Detail & Related papers (2023-02-01T17:32:16Z) - A Unifying Multi-sampling-ratio CS-MRI Framework With Two-grid-cycle
Correction and Geometric Prior Distillation [7.643154460109723]
We propose a unifying deep unfolding multi-sampling-ratio CS-MRI framework, by merging advantages of model-based and deep learning-based methods.
Inspired by multigrid algorithm, we first embed the CS-MRI-based optimization algorithm into correction-distillation scheme.
We employ a condition module to learn adaptively step-length and noise level from compressive sampling ratio in every stage.
arXiv Detail & Related papers (2022-05-14T13:36:27Z) - A Learnable Variational Model for Joint Multimodal MRI Reconstruction
and Synthesis [4.056490719080639]
We propose a novel deep-learning model for joint reconstruction and synthesis of multi-modal MRI.
The output of our model includes reconstructed images of the source modalities and high-quality image synthesized in the target modality.
arXiv Detail & Related papers (2022-04-08T01:35:19Z) - An Optimization-Based Meta-Learning Model for MRI Reconstruction with
Diverse Dataset [4.9259403018534496]
We develop a generalizable MRI reconstruction model in the meta-learning framework.
The proposed network learns regularization function in a learner adaptional model.
We test the result of quick training on the unseen tasks after meta-training and in the saving half of the time.
arXiv Detail & Related papers (2021-10-02T03:21:52Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning to train refinement policies directly from simulation.
The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations.
arXiv Detail & Related papers (2021-03-01T22:55:48Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
We propose the first meta-learning paradigm in the Reproducing Kernel Hilbert Space (RKHS) induced by the meta-model's Neural Tangent Kernel (NTK)
Within this paradigm, we introduce two meta-learning algorithms, which no longer need a sub-optimal iterative inner-loop adaptation as in the MAML framework.
We achieve this goal by 1) replacing the adaptation with a fast-adaptive regularizer in the RKHS; and 2) solving the adaptation analytically based on the NTK theory.
arXiv Detail & Related papers (2021-02-07T20:53:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.