Optimization-Based Deep learning methods for Magnetic Resonance Imaging
Reconstruction and Synthesis
- URL: http://arxiv.org/abs/2303.01515v1
- Date: Thu, 2 Mar 2023 18:59:44 GMT
- Title: Optimization-Based Deep learning methods for Magnetic Resonance Imaging
Reconstruction and Synthesis
- Authors: Wanyu Bian
- Abstract summary: This dissertation aims to provide advanced nonsmooth variational models (Magnetic Resonance Image) MRI reconstruction, efficient learnable image reconstruction algorithms, and deep learning methods for MRI reconstruction and synthesis.
The first part introduces a novel based deep neural network whose architecture is inspired by proximal gradient descent for a variational model.
The second part is a substantial extension of the preliminary work in the first part by solving the calibration-free fast pMRI reconstruction problem in a discrete-time optimal framework.
The third part aims at developing a generalizable Magnetic Resonance Imaging (MRI) reconstruction method in the metalearning framework.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This dissertation is devoted to provide advanced nonconvex nonsmooth
variational models of (Magnetic Resonance Image) MRI reconstruction, efficient
learnable image reconstruction algorithms and parameter training algorithms
that improve the accuracy and robustness of the optimization-based deep
learning methods for compressed sensing MRI reconstruction and synthesis. The
first part introduces a novel optimization based deep neural network whose
architecture is inspired by proximal gradient descent for solving a variational
model. The second part is a substantial extension of the preliminary work in
the first part by solving the calibration-free fast pMRI reconstruction problem
in a discrete-time optimal control framework. The third part aims at developing
a generalizable Magnetic Resonance Imaging (MRI) reconstruction method in the
meta-learning framework. The last part aims to synthesize target modality of
MRI by using partially scanned k-space data from source modalities instead of
fully scanned data that is used in the state-of-the-art multimodal synthesis.
Related papers
- A Brief Overview of Optimization-Based Algorithms for MRI Reconstruction Using Deep Learning [0.0]
The integration of deep learning algorithms offers significant potential for optimizing MRI reconstruction processes.
Despite the growing body of research in this area, a comprehensive survey of optimization-based deep learning models tailored for MRI reconstruction has yet to be conducted.
This review addresses this gap by presenting a thorough examination of the latest optimization-based algorithms in deep learning specifically designed for MRI reconstruction.
arXiv Detail & Related papers (2024-06-03T21:52:50Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Robust Depth Linear Error Decomposition with Double Total Variation and
Nuclear Norm for Dynamic MRI Reconstruction [15.444386058967579]
There are still problems with dynamic MRI k-space reconstruction based on Compressed Sensing (CS)
In this paper, we propose a novel robust lowrank dynamic MRI reconstruction optimization model via highly under-sampled Fourier Transform (DFT)
Experiments on dynamic MRI data demonstrate the superior performance proposed method in terms of both reconstruction accuracy and time complexity.
arXiv Detail & Related papers (2023-10-23T13:34:59Z) - Diffusion Modeling with Domain-conditioned Prior Guidance for
Accelerated MRI and qMRI Reconstruction [3.083408283778178]
This study introduces a novel approach for image reconstruction based on a diffusion model conditioned on the native data domain.
The proposed method demonstrates a significant promise, particularly for reconstructing images at high acceleration factors.
arXiv Detail & Related papers (2023-09-02T01:33:50Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - ERNAS: An Evolutionary Neural Architecture Search for Magnetic Resonance
Image Reconstructions [0.688204255655161]
A popular approach to accelerated MRI is to undersample the k-space data.
While undersampling speeds up the scan procedure, it generates artifacts in the images, and advanced reconstruction algorithms are needed to produce artifact-free images.
In this work, MRI reconstruction from undersampled data was carried out using an optimized neural network using a novel evolutionary neural architecture search algorithm.
arXiv Detail & Related papers (2022-06-15T03:42:18Z) - Learning Optimal K-space Acquisition and Reconstruction using
Physics-Informed Neural Networks [46.751292014516025]
Deep neural networks have been applied to reconstruct undersampled k-space data and have shown improved reconstruction performance.
This work proposes a novel framework to learn k-space sampling trajectories by considering it as an Ordinary Differential Equation (ODE) problem.
Experiments were conducted on different in-viv datasets (textite.g., brain and knee images) acquired with different sequences.
arXiv Detail & Related papers (2022-04-05T20:28:42Z) - Cross-Modality High-Frequency Transformer for MR Image Super-Resolution [100.50972513285598]
We build an early effort to build a Transformer-based MR image super-resolution framework.
We consider two-fold domain priors including the high-frequency structure prior and the inter-modality context prior.
We establish a novel Transformer architecture, called Cross-modality high-frequency Transformer (Cohf-T), to introduce such priors into super-resolving the low-resolution images.
arXiv Detail & Related papers (2022-03-29T07:56:55Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.