Theory: Multidimensional Space of Events
- URL: http://arxiv.org/abs/2505.11566v1
- Date: Fri, 16 May 2025 08:54:12 GMT
- Title: Theory: Multidimensional Space of Events
- Authors: Sergii Kavun,
- Abstract summary: This paper develops a multidimensional space of events (MDSE) theory that accounts for mutual influences between events and hypotheses sets.<n>MDSE successfully models interrelated variables with 15-20% improved prediction accuracy.<n>This approach offers practical applications in engineering challenges including risk assessment, resource optimization, and forecasting problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper extends Bayesian probability theory by developing a multidimensional space of events (MDSE) theory that accounts for mutual influences between events and hypotheses sets. While traditional Bayesian approaches assume conditional independence between certain variables, real-world systems often exhibit complex interdependencies that limit classical model applicability. Building on established probabilistic foundations, our approach introduces a mathematical formalism for modeling these complex relationships. We developed the MDSE theory through rigorous mathematical derivation and validated it using three complementary methodologies: analytical proofs, computational simulations, and case studies drawn from diverse domains. Results demonstrate that MDSE successfully models complex dependencies with 15-20% improved prediction accuracy compared to standard Bayesian methods when applied to datasets with high interdimensionality. This theory particularly excels in scenarios with over 50 interrelated variables, where traditional methods show exponential computational complexity growth while MDSE maintains polynomial scaling. Our findings indicate that MDSE provides a viable mathematical foundation for extending Bayesian reasoning to complex systems while maintaining computational tractability. This approach offers practical applications in engineering challenges including risk assessment, resource optimization, and forecasting problems where multiple interdependent factors must be simultaneously considered.
Related papers
- From Axioms to Algorithms: Mechanized Proofs of the vNM Utility Theorem [0.0]
We implement the classical axioms of preference-completeness, transitivity, continuity, and independence.<n>Our formalization captures the mathematical structure of preference relations over lotteries.<n>This formalization provides a rigorous foundation for applications in economic modeling, AI alignment, and management decision systems.
arXiv Detail & Related papers (2025-06-08T10:09:54Z) - Hypothesis-Driven Theory-of-Mind Reasoning for Large Language Models [76.6028674686018]
We introduce thought-tracing, an inference-time reasoning algorithm to trace the mental states of agents.<n>Our algorithm is modeled after the Bayesian theory-of-mind framework.<n>We evaluate thought-tracing on diverse theory-of-mind benchmarks, demonstrating significant performance improvements.
arXiv Detail & Related papers (2025-02-17T15:08:50Z) - Deriving Causal Order from Single-Variable Interventions: Guarantees & Algorithm [14.980926991441345]
We show that datasets containing interventional data can be effectively extracted under realistic assumptions about the data distribution.<n>We introduce a novel variant of interventional faithfulness, which relies on comparisons between the marginal distributions of each variable across observational and interventional settings.<n>We also introduce Intersort, an algorithm designed to infer the causal order from datasets containing large numbers of single-variable interventions.
arXiv Detail & Related papers (2024-05-28T16:07:17Z) - Beyond DAGs: A Latent Partial Causal Model for Multimodal Learning [80.44084021062105]
We propose a novel latent partial causal model for multimodal data, featuring two latent coupled variables, connected by an undirected edge, to represent the transfer of knowledge across modalities.<n>Under specific statistical assumptions, we establish an identifiability result, demonstrating that representations learned by multimodal contrastive learning correspond to the latent coupled variables up to a trivial transformation.<n>Experiments on a pre-trained CLIP model embodies disentangled representations, enabling few-shot learning and improving domain generalization across diverse real-world datasets.
arXiv Detail & Related papers (2024-02-09T07:18:06Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
We propose an information-theoretic approach to quantify the degree of redundancy, uniqueness, and synergy relating input modalities with an output task.
To validate PID estimation, we conduct extensive experiments on both synthetic datasets where the PID is known and on large-scale multimodal benchmarks.
We demonstrate their usefulness in (1) quantifying interactions within multimodal datasets, (2) quantifying interactions captured by multimodal models, (3) principled approaches for model selection, and (4) three real-world case studies.
arXiv Detail & Related papers (2023-02-23T18:59:05Z) - Unifying Pairwise Interactions in Complex Dynamics [0.0]
We introduce a library of 237 statistics of pairwise interactions from a wide range of real-world and model-generated systems.
Our analysis highlights new commonalities between different mathematical formulations, providing a unified picture of a rich interdisciplinary literature.
arXiv Detail & Related papers (2022-01-28T05:44:27Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
We develop effective Monte Carlo algorithms to approximate the optimal bounds from an arbitrary combination of observational and experimental data.
Our algorithms are validated extensively on synthetic and real-world datasets.
arXiv Detail & Related papers (2021-10-12T02:21:30Z) - Parsimonious Inference [0.0]
Parsimonious inference is an information-theoretic formulation of inference over arbitrary architectures.
Our approaches combine efficient encodings with prudent sampling strategies to construct predictive ensembles without cross-validation.
arXiv Detail & Related papers (2021-03-03T04:13:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.