The Stochastic Occupation Kernel (SOCK) Method for Learning Stochastic Differential Equations
- URL: http://arxiv.org/abs/2505.11622v1
- Date: Fri, 16 May 2025 18:38:50 GMT
- Title: The Stochastic Occupation Kernel (SOCK) Method for Learning Stochastic Differential Equations
- Authors: Michael L. Wells, Kamel Lahouel, Bruno Jedynak,
- Abstract summary: We present a novel kernel-based method for learning multivariate differential equations (SDEs)<n>We first estimate the drift term function, then the (matrix-valued) diffusion function given the drift.<n>We propose a simple learning procedure that retains strong predictive accuracy while using Fenchel duality to promote efficiency.
- Score: 0.786519149320184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel kernel-based method for learning multivariate stochastic differential equations (SDEs). The method follows a two-step procedure: we first estimate the drift term function, then the (matrix-valued) diffusion function given the drift. Occupation kernels are integral functionals on a reproducing kernel Hilbert space (RKHS) that aggregate information over a trajectory. Our approach leverages vector-valued occupation kernels for estimating the drift component of the stochastic process. For diffusion estimation, we extend this framework by introducing operator-valued occupation kernels, enabling the estimation of an auxiliary matrix-valued function as a positive semi-definite operator, from which we readily derive the diffusion estimate. This enables us to avoid common challenges in SDE learning, such as intractable likelihoods, by optimizing a reconstruction-error-based objective. We propose a simple learning procedure that retains strong predictive accuracy while using Fenchel duality to promote efficiency. We validate the method on simulated benchmarks and a real-world dataset of Amyloid imaging in healthy and Alzheimer's disease (AD) subjects.
Related papers
- The Stochastic Occupation Kernel Method for System Identification [0.786519149320184]
We propose a two-step method for learning the drift and diffusion of a differential equation given snapshots of the process.
In the first step, we learn the drift by applying the occupation kernel algorithm to the expected value of the process.
In the second step, we learn the diffusion given the drift using a semi-definite program.
arXiv Detail & Related papers (2024-06-21T21:36:18Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.<n>We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.<n>Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Nonparametric learning of kernels in nonlocal operators [6.314604944530131]
We provide a rigorous identifiability analysis and convergence study for the learning of kernels in nonlocal operators.
We propose a nonparametric regression algorithm with a novel data adaptive RKHS Tikhonov regularization method based on the function space of identifiability.
arXiv Detail & Related papers (2022-05-23T02:47:55Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
We show that a phenomenon can be precisely characterized in the context of kernel methods.
We consider the minimization of a quadratic objective in a separable Hilbert space, and show that with early stopping, the choice of learning rate influences the spectral decomposition of the obtained solution.
arXiv Detail & Related papers (2022-02-28T13:01:04Z) - A Kernel Learning Method for Backward SDE Filter [1.7035011973665108]
We develop a kernel learning backward SDE filter method to propagate the state of a dynamical system based on its partial noisy observations.
We introduce a kernel learning method to learn a continuous global approximation for the conditional probability density function of the target state.
Numerical experiments demonstrate that the kernel learning backward SDE is highly effective and highly efficient.
arXiv Detail & Related papers (2022-01-25T19:49:19Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Kernel Ridge Riesz Representers: Generalization, Mis-specification, and the Counterfactual Effective Dimension [2.7152798636894193]
I interpret kernel balancing weights as kernel ridge Riesz representers (KRRR)
KRRR is an exact generalization of kernel ridge regression.
I use KRRR to quantify uncertainty for heterogeneous treatment effects, by age, of 401(k) eligibility on assets.
arXiv Detail & Related papers (2021-02-22T14:46:23Z) - A Mean-Field Theory for Learning the Sch\"{o}nberg Measure of Radial
Basis Functions [13.503048325896174]
We learn the distribution in the Sch"onberg integral representation of the radial basis functions from training samples.
We prove that in the scaling limits, the empirical measure of the Langevin particles converges to the law of a reflected Ito diffusion-drift process.
arXiv Detail & Related papers (2020-06-23T21:04:48Z) - Physics Informed Deep Kernel Learning [24.033468062984458]
Physics Informed Deep Kernel Learning (PI-DKL) exploits physics knowledge represented by differential equations with latent sources.
For efficient and effective inference, we marginalize out the latent variables and derive a collapsed model evidence lower bound (ELBO)
arXiv Detail & Related papers (2020-06-08T22:43:31Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
We propose a novel approach for scaling GP regression with derivatives based on quadrature Fourier features.
We prove deterministic, non-asymptotic and exponentially fast decaying error bounds which apply for both the approximated kernel as well as the approximated posterior.
arXiv Detail & Related papers (2020-03-05T14:33:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.