A Kernel Learning Method for Backward SDE Filter
- URL: http://arxiv.org/abs/2201.10600v1
- Date: Tue, 25 Jan 2022 19:49:19 GMT
- Title: A Kernel Learning Method for Backward SDE Filter
- Authors: Richard Archibald, Feng Bao
- Abstract summary: We develop a kernel learning backward SDE filter method to propagate the state of a dynamical system based on its partial noisy observations.
We introduce a kernel learning method to learn a continuous global approximation for the conditional probability density function of the target state.
Numerical experiments demonstrate that the kernel learning backward SDE is highly effective and highly efficient.
- Score: 1.7035011973665108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we develop a kernel learning backward SDE filter method to
estimate the state of a stochastic dynamical system based on its partial noisy
observations. A system of forward backward stochastic differential equations is
used to propagate the state of the target dynamical model, and Bayesian
inference is applied to incorporate the observational information. To
characterize the dynamical model in the entire state space, we introduce a
kernel learning method to learn a continuous global approximation for the
conditional probability density function of the target state by using discrete
approximated density values as training data. Numerical experiments demonstrate
that the kernel learning backward SDE is highly effective and highly efficient.
Related papers
- A Training-Free Conditional Diffusion Model for Learning Stochastic Dynamical Systems [10.820654486318336]
This study introduces a training-free conditional diffusion model for learning unknown differential equations (SDEs) using data.
The proposed approach addresses key challenges in computational efficiency and accuracy for modeling SDEs.
The learned models exhibit significant improvements in predicting both short-term and long-term behaviors of unknown systems.
arXiv Detail & Related papers (2024-10-04T03:07:36Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Rigorous dynamical mean field theory for stochastic gradient descent
methods [17.90683687731009]
We prove closed-form equations for the exact high-dimensionals of a family of first order gradient-based methods.
This includes widely used algorithms such as gradient descent (SGD) or Nesterov acceleration.
arXiv Detail & Related papers (2022-10-12T21:10:55Z) - ImitationFlow: Learning Deep Stable Stochastic Dynamic Systems by
Normalizing Flows [29.310742141970394]
We introduce ImitationFlow, a novel Deep generative model that allows learning complex globally stable, nonlinear dynamics.
We show the effectiveness of our method with both standard datasets and a real robot experiment.
arXiv Detail & Related papers (2020-10-25T14:49:46Z) - Identifying Latent Stochastic Differential Equations [29.103393300261587]
We present a method for learning latent differential equations (SDEs) from high-dimensional time series data.
The proposed method learns the mapping from ambient to latent space, and the underlying SDE coefficients, through a self-supervised learning approach.
We validate the method through several simulated video processing tasks, where the underlying SDE is known, and through real world datasets.
arXiv Detail & Related papers (2020-07-12T19:46:31Z) - A Mean-Field Theory for Learning the Sch\"{o}nberg Measure of Radial
Basis Functions [13.503048325896174]
We learn the distribution in the Sch"onberg integral representation of the radial basis functions from training samples.
We prove that in the scaling limits, the empirical measure of the Langevin particles converges to the law of a reflected Ito diffusion-drift process.
arXiv Detail & Related papers (2020-06-23T21:04:48Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
Regularization of neural networks (e.g. dropout) is a widespread technique in deep learning that allows for better generalization.
We show that data augmentation during the training improves the performance of both deterministic and versions of the same model.
However, the improvements obtained by the data augmentation completely eliminate the empirical regularization gains, making the performance of neural ODE and neural SDE negligible.
arXiv Detail & Related papers (2020-02-22T22:12:56Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
We propose a novel numerical scheme to optimize the gradient flows for learning energy-based models (EBMs)
We derive a second-order Wasserstein gradient flow of the global relative entropy from Fokker-Planck equation.
Compared with existing schemes, Wasserstein gradient flow is a smoother and near-optimal numerical scheme to approximate real data densities.
arXiv Detail & Related papers (2019-10-31T02:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.