Urban Representation Learning for Fine-grained Economic Mapping: A Semi-supervised Graph-based Approach
- URL: http://arxiv.org/abs/2505.11645v1
- Date: Fri, 16 May 2025 19:12:08 GMT
- Title: Urban Representation Learning for Fine-grained Economic Mapping: A Semi-supervised Graph-based Approach
- Authors: Jinzhou Cao, Xiangxu Wang, Jiashi Chen, Wei Tu, Zhenhui Li, Xindong Yang, Tianhong Zhao, Qingquan Li,
- Abstract summary: SemiGTX is an explainable semi-supervised graph learning framework for sectoral economic mapping.<n>It concurrently maps GDP across primary, secondary, and tertiary sectors within a unified model.<n>Experiments conducted in the Pearl River Delta region of China demonstrate the model's superior performance compared to existing methods.
- Score: 16.044037625795998
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Fine-grained economic mapping through urban representation learning has emerged as a crucial tool for evidence-based economic decisions. While existing methods primarily rely on supervised or unsupervised approaches, they often overlook semi-supervised learning in data-scarce scenarios and lack unified multi-task frameworks for comprehensive sectoral economic analysis. To address these gaps, we propose SemiGTX, an explainable semi-supervised graph learning framework for sectoral economic mapping. The framework is designed with dedicated fusion encoding modules for various geospatial data modalities, seamlessly integrating them into a cohesive graph structure. It introduces a semi-information loss function that combines spatial self-supervision with locally masked supervised regression, enabling more informative and effective region representations. Through multi-task learning, SemiGTX concurrently maps GDP across primary, secondary, and tertiary sectors within a unified model. Extensive experiments conducted in the Pearl River Delta region of China demonstrate the model's superior performance compared to existing methods, achieving R2 scores of 0.93, 0.96, and 0.94 for the primary, secondary and tertiary sectors, respectively. Cross-regional experiments in Beijing and Chengdu further illustrate its generality. Systematic analysis reveals how different data modalities influence model predictions, enhancing explainability while providing valuable insights for regional development planning. This representation learning framework advances regional economic monitoring through diverse urban data integration, providing a robust foundation for precise economic forecasting.
Related papers
- Uniting contrastive and generative learning for event sequences models [51.547576949425604]
This study investigates the integration of two self-supervised learning techniques - instance-wise contrastive learning and a generative approach based on restoring masked events in latent space.<n> Experiments conducted on several public datasets, focusing on sequence classification and next-event type prediction, show that the integrated method achieves superior performance compared to individual approaches.
arXiv Detail & Related papers (2024-08-19T13:47:17Z) - Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
We introduce a mathematical model that formalizes relational learning as hypergraph recovery to study pre-training of Foundation Models (FMs)
In our framework, the world is represented as a hypergraph, with data abstracted as random samples from hyperedges. We theoretically examine the feasibility of a Pre-Trained Model (PTM) to recover this hypergraph and analyze the data efficiency in a minimax near-optimal style.
arXiv Detail & Related papers (2024-06-17T06:20:39Z) - GeoSEE: Regional Socio-Economic Estimation With a Large Language Model [17.31652821477571]
We present GeoSEE, a method that can estimate various socio-economic indicators using a unified pipeline powered by a large language model (LLM)
The system then computes target indicators via in-context learning after aggregating results from selected modules in the format of natural language-based texts.
Our method outperforms other predictive models in both unsupervised and low-shot contexts.
arXiv Detail & Related papers (2024-06-14T07:50:22Z) - Graph Learning under Distribution Shifts: A Comprehensive Survey on
Domain Adaptation, Out-of-distribution, and Continual Learning [53.81365215811222]
We provide a review and summary of the latest approaches, strategies, and insights that address distribution shifts within the context of graph learning.
We categorize existing graph learning methods into several essential scenarios, including graph domain adaptation learning, graph out-of-distribution learning, and graph continual learning.
We discuss the potential applications and future directions for graph learning under distribution shifts with a systematic analysis of the current state in this field.
arXiv Detail & Related papers (2024-02-26T07:52:40Z) - Granularity at Scale: Estimating Neighborhood Socioeconomic Indicators
from High-Resolution Orthographic Imagery and Hybrid Learning [1.8369448205408005]
Overhead images can help fill in the gaps where community information is sparse.
Recent advancements in machine learning and computer vision have made it possible to quickly extract features from and detect patterns in image data.
In this work, we explore how well two approaches, a supervised convolutional neural network and semi-supervised clustering can estimate population density, median household income, and educational attainment.
arXiv Detail & Related papers (2023-09-28T19:30:26Z) - Attentive Graph Enhanced Region Representation Learning [7.4106801792345705]
Representing urban regions accurately and comprehensively is essential for various urban planning and analysis tasks.
We propose the Attentive Graph Enhanced Region Representation Learning (ATGRL) model, which aims to capture comprehensive dependencies from multiple graphs and learn rich semantic representations of urban regions.
arXiv Detail & Related papers (2023-07-06T16:38:43Z) - Learning Economic Indicators by Aggregating Multi-Level Geospatial
Information [20.0397537179667]
This research presents a deep learning model to predict economic indicators via aggregating traits observed from multiple levels of geographical units.
Our new multi-level learning model substantially outperforms strong baselines in predicting key indicators such as population, purchasing power, and energy consumption.
We discuss the multi-level model's implications for measuring inequality, which is the essential first step in policy and social science research on inequality and poverty.
arXiv Detail & Related papers (2022-05-03T13:05:39Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - Urban Region Profiling via A Multi-Graph Representation Learning
Framework [0.0]
We propose a multi-graph representative learning framework, called Region2Vec, for urban region profiling.
Experiments on real-world datasets show that Region2Vec can be employed in three applications and outperforms all state-of-the-art baselines.
arXiv Detail & Related papers (2022-02-04T11:05:37Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.