Attend to Not Attended: Structure-then-Detail Token Merging for Post-training DiT Acceleration
- URL: http://arxiv.org/abs/2505.11707v1
- Date: Fri, 16 May 2025 21:27:38 GMT
- Title: Attend to Not Attended: Structure-then-Detail Token Merging for Post-training DiT Acceleration
- Authors: Haipeng Fang, Sheng Tang, Juan Cao, Enshuo Zhang, Fan Tang, Tong-Yee Lee,
- Abstract summary: This study proposes a novel concept: attend to prune feature redundancies in areas not attended by the diffusion process.<n>We analyze the location and degree of feature redundancies based on the structure-then-detail denoising priors.<n>We introduce SDTM, a structure-then-detail token merging approach that dynamically compresses feature redundancies.
- Score: 24.85624444212476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion transformers have shown exceptional performance in visual generation but incur high computational costs. Token reduction techniques that compress models by sharing the denoising process among similar tokens have been introduced. However, existing approaches neglect the denoising priors of the diffusion models, leading to suboptimal acceleration and diminished image quality. This study proposes a novel concept: attend to prune feature redundancies in areas not attended by the diffusion process. We analyze the location and degree of feature redundancies based on the structure-then-detail denoising priors. Subsequently, we introduce SDTM, a structure-then-detail token merging approach that dynamically compresses feature redundancies. Specifically, we design dynamic visual token merging, compression ratio adjusting, and prompt reweighting for different stages. Served in a post-training way, the proposed method can be integrated seamlessly into any DiT architecture. Extensive experiments across various backbones, schedulers, and datasets showcase the superiority of our method, for example, it achieves 1.55 times acceleration with negligible impact on image quality. Project page: https://github.com/ICTMCG/SDTM.
Related papers
- Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression [90.59962443790593]
In this paper, we present a variable-rate image compression model based on invertible transform to overcome limitations.<n> Specifically, we design a lightweight multi-scale invertible neural network, which maps the input image into multi-scale latent representations.<n> Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods.
arXiv Detail & Related papers (2025-03-27T09:08:39Z) - "Principal Components" Enable A New Language of Images [79.45806370905775]
We introduce a novel visual tokenization framework that embeds a provable PCA-like structure into the latent token space.<n>Our approach achieves state-of-the-art reconstruction performance and enables better interpretability to align with the human vision system.
arXiv Detail & Related papers (2025-03-11T17:59:41Z) - One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
We propose a one-step diffusion model for deblurring (OSDD), a novel framework that reduces the denoising process to a single step.<n>To tackle fidelity loss in diffusion models, we introduce an enhanced variational autoencoder (eVAE), which improves structural restoration.<n>Our method achieves strong performance on both full and no-reference metrics.
arXiv Detail & Related papers (2025-03-09T09:39:57Z) - CALLIC: Content Adaptive Learning for Lossless Image Compression [64.47244912937204]
CALLIC sets a new state-of-the-art (SOTA) for learned lossless image compression.<n>We propose a content-aware autoregressive self-attention mechanism by leveraging convolutional gating operations.<n>During encoding, we decompose pre-trained layers, including depth-wise convolutions, using low-rank matrices and then adapt the incremental weights on testing image by Rate-guided Progressive Fine-Tuning (RPFT)<n>RPFT fine-tunes with gradually increasing patches that are sorted in descending order by estimated entropy, optimizing learning process and reducing adaptation time.
arXiv Detail & Related papers (2024-12-23T10:41:18Z) - Efficient Diffusion Transformer with Step-wise Dynamic Attention Mediators [83.48423407316713]
We present a novel diffusion transformer framework incorporating an additional set of mediator tokens to engage with queries and keys separately.
Our model initiates the denoising process with a precise, non-ambiguous stage and gradually transitions to a phase enriched with detail.
Our method achieves a state-of-the-art FID score of 2.01 when integrated with the recent work SiT.
arXiv Detail & Related papers (2024-08-11T07:01:39Z) - Generalized Nested Latent Variable Models for Lossy Coding applied to Wind Turbine Scenarios [14.48369551534582]
A learning-based approach seeks to minimize the compromise between compression rate and reconstructed image quality.
A successful technique consists in introducing a deep hyperprior that operates within a 2-level nested latent variable model.
This paper extends this concept by designing a generalized L-level nested generative model with a Markov chain structure.
arXiv Detail & Related papers (2024-06-10T11:00:26Z) - Coarse-to-Fine Video Denoising with Dual-Stage Spatial-Channel
Transformer [29.03463312813923]
Video denoising aims to recover high-quality frames from the noisy video.
Most existing approaches adopt convolutional neural networks(CNNs) to separate the noise from the original visual content.
We propose a Dual-stage Spatial-Channel Transformer (DSCT) for coarse-to-fine video denoising.
arXiv Detail & Related papers (2022-04-30T09:01:21Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.