論文の概要: OMAC: A Broad Optimization Framework for LLM-Based Multi-Agent Collaboration
- arxiv url: http://arxiv.org/abs/2505.11765v2
- Date: Wed, 21 May 2025 21:38:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 12:25:14.988222
- Title: OMAC: A Broad Optimization Framework for LLM-Based Multi-Agent Collaboration
- Title(参考訳): OMAC: LLMベースのマルチエージェントコラボレーションのためのブロード最適化フレームワーク
- Authors: Shijun Li, Hilaf Hasson, Joydeep Ghosh,
- Abstract要約: 複数のエージェントが協調して相互に通信するマルチエージェントシステム(MAS)は、複雑なタスクにおいて強化された機能を示す。
LLMをベースとしたMASの全体最適化を目的とした汎用フレームワークであるOMACを紹介する。
- 参考スコア(独自算出の注目度): 7.755690129264035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agents powered by advanced large language models (LLMs) have demonstrated impressive capabilities across diverse complex applications. Recently, Multi-Agent Systems (MAS), wherein multiple agents collaborate and communicate with each other, have exhibited enhanced capabilities in complex tasks, such as high-quality code generation and arithmetic reasoning. However, the development of such systems often relies on handcrafted methods, and the literature on systematic design and optimization of LLM-based MAS remains limited. In this work, we introduce OMAC, a general framework designed for holistic optimization of LLM-based MAS. Specifically, we identify five key optimization dimensions for MAS, encompassing both agent functionality and collaboration structure. Building upon these dimensions, we first propose a general algorithm, utilizing two actors termed the Semantic Initializer and the Contrastive Comparator, to optimize any single dimension. Then, we present an algorithm for joint optimization across multiple dimensions. Extensive experiments demonstrate the superior performance of OMAC on code generation, arithmetic reasoning, and general reasoning tasks against state-of-the-art approaches.
- Abstract(参考訳): 先進的な大規模言語モデル(LLM)を利用したエージェントは、様々な複雑なアプリケーションにまたがる印象的な機能を示している。
近年,複数のエージェントが協調し,相互に通信するマルチエージェントシステム (MAS) は,高品質なコード生成や算術的推論といった複雑なタスクにおいて,高度な能力を発揮している。
しかし、そのようなシステムの開発は手作りの手法に頼りがちであり、LLMベースのMASの体系的設計と最適化に関する文献は依然として限られている。
本稿では,LLMに基づくMASの全体最適化を目的とした汎用フレームワークであるOMACを紹介する。
具体的には、エージェント機能と協調構造の両方を含む、MASの5つの重要な最適化次元を同定する。
これらの次元に基づいて,まずセマンティック初期化器(Semantic Initializer)とコントラシブ比較器(Contrastive Comparator)と呼ばれる2つのアクターを用いて,任意の次元を最適化する一般アルゴリズムを提案する。
次に,複数次元にわたる共同最適化アルゴリズムを提案する。
大規模な実験は、コード生成、算術的推論、そして最先端のアプローチに対する一般的な推論タスクにおけるOMACの優れた性能を示す。
関連論文リスト
- Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
人間のフィードバックからの強化学習は、大規模言語モデルを整合させる効果的な手法として現れてきた。
制御された復号化は、再訓練せずに推論時にモデルを整列するメカニズムを提供する。
本稿では,既存の既成のLCMポリシを活用するエージェントベースのデコーディング戦略の混合を提案する。
論文 参考訳(メタデータ) (2025-03-27T17:34:25Z) - Towards more Contextual Agents: An extractor-Generator Optimization Framework [0.0]
LLM(Large Language Model)ベースのエージェントは、幅広い汎用アプリケーションにわたる複雑なタスクの解決に顕著な成功を収めている。
しかしながら、それらのパフォーマンスは、専門産業や研究領域のようなコンテキスト固有のシナリオで劣化することが多い。
この課題に対処するため,本研究では,LLMエージェントの文脈適応性を高めるための体系的アプローチを提案する。
論文 参考訳(メタデータ) (2025-02-18T15:07:06Z) - Improving Existing Optimization Algorithms with LLMs [0.9668407688201361]
本稿では,Large Language Models (LLM) が既存の最適化アルゴリズムをどのように拡張するかを検討する。
事前学習した知識を用いて、革新的なバリエーションと実装戦略を提案する能力を示す。
以上の結果から, GPT-4oによる代替案はCMSAのエキスパート設計よりも優れていた。
論文 参考訳(メタデータ) (2025-02-12T10:58:57Z) - Multi-Agent Design: Optimizing Agents with Better Prompts and Topologies [41.21314691388456]
対話やコラボレーションを行う複数のエージェントとして使用される大規模な言語モデルは、複雑なタスクの解決に優れています。
マルチエージェントシステム(MAS)のプロンプトやトポロジーの設計は本質的に複雑である。
複雑なMAS設計空間を効率的に活用するMAS最適化フレームワークであるMulti-Agent System Search (MASS)を提案する。
論文 参考訳(メタデータ) (2025-02-04T17:56:44Z) - Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
大きな言語モデル(LLM)と進化的アルゴリズム(EA)は、制限を克服し、最適化をより自動化するための有望な新しいアプローチを提供する。
LLMは最適化戦略の生成、洗練、解釈が可能な動的エージェントとして機能する。
EAは進化作用素を通して、複雑な解空間を効率的に探索する。
論文 参考訳(メタデータ) (2024-10-28T09:04:49Z) - Training of Scaffolded Language Models with Language Supervision: A Survey [62.59629932720519]
本調査は,戦後のLM周辺における新規構造物の設計と最適化に関する文献を整理した。
本稿では,この階層構造を足場型LMと呼び,ツールを用いた多段階プロセスに統合されたLMに焦点を当てる。
論文 参考訳(メタデータ) (2024-10-21T18:06:25Z) - On the Design and Analysis of LLM-Based Algorithms [74.7126776018275]
大規模言語モデル(LLM)はアルゴリズムのサブルーチンとして使用される。
LLMは素晴らしい経験的成功を収めた。
提案フレームワークは,LLMアルゴリズムの進歩を約束する。
論文 参考訳(メタデータ) (2024-07-20T07:39:07Z) - Should AI Optimize Your Code? A Comparative Study of Classical Optimizing Compilers Versus Current Large Language Models [0.0]
大規模言語モデル(LLM)は、コード最適化に革命をもたらすAIアプローチの可能性に関する興味深い疑問を提起する。
この作業は、コンパイラコミュニティにとって重要な質問に答えることを目的としている。
本稿では3つの古典最適化コンパイラと2つの最近の大規模言語モデルの比較分析を行う。
論文 参考訳(メタデータ) (2024-06-17T23:26:41Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration [98.18244218156492]
大規模言語モデル(LLM)は、非常に高度な自然言語処理を持つ。
アプリケーションがマルチエージェント環境に拡大するにつれて、包括的な評価フレームワークの必要性が生じる。
この研究は、マルチエージェント設定内でLLMを評価するための新しい競合ベースのベンチマークフレームワークを導入している。
論文 参考訳(メタデータ) (2023-11-14T21:46:27Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。