Improving Coverage in Combined Prediction Sets with Weighted p-values
- URL: http://arxiv.org/abs/2505.11785v1
- Date: Sat, 17 May 2025 01:51:28 GMT
- Title: Improving Coverage in Combined Prediction Sets with Weighted p-values
- Authors: Gina Wong, Drew Prinster, Suchi Saria, Rama Chellappa, Anqi Liu,
- Abstract summary: Conformal prediction quantifies the uncertainty of machine learning models by augmenting point predictions with valid prediction sets, assuming exchangeability.<n>We propose a framework for the weighted aggregation of prediction sets, where weights are assigned to each prediction set based on their contribution.<n>Our framework offers flexible control over how the sets are aggregated, achieving tighter coverage bounds that interpolate between the $1-2alpha$ guarantee of the combined models and the $1-alpha$ guarantee of an individual model depending on the distribution of weights.
- Score: 40.39460846047462
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Conformal prediction quantifies the uncertainty of machine learning models by augmenting point predictions with valid prediction sets, assuming exchangeability. For complex scenarios involving multiple trials, models, or data sources, conformal prediction sets can be aggregated to create a prediction set that captures the overall uncertainty, often improving precision. However, aggregating multiple prediction sets with individual $1-\alpha$ coverage inevitably weakens the overall guarantee, typically resulting in $1-2\alpha$ worst-case coverage. In this work, we propose a framework for the weighted aggregation of prediction sets, where weights are assigned to each prediction set based on their contribution. Our framework offers flexible control over how the sets are aggregated, achieving tighter coverage bounds that interpolate between the $1-2\alpha$ guarantee of the combined models and the $1-\alpha$ guarantee of an individual model depending on the distribution of weights. We extend our framework to data-dependent weights, and we derive a general procedure for data-dependent weight aggregation that maintains finite-sample validity. We demonstrate the effectiveness of our methods through experiments on synthetic and real data in the mixture-of-experts setting, and we show that aggregation with data-dependent weights provides a form of adaptive coverage.
Related papers
- Minimum Volume Conformal Sets for Multivariate Regression [44.99833362998488]
Conformal prediction provides a principled framework for constructing predictive sets with finite-sample validity.<n>We propose an optimization-driven framework based on a novel loss function that directly learns minimum-conformity covering sets.<n>Our approach optimize over prediction sets defined by arbitrary norm balls, including single and multi-norm formulations.
arXiv Detail & Related papers (2025-03-24T18:54:22Z) - Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores [52.92618442300405]
It is impossible to achieve exact, distribution-free conditional coverage in finite samples.<n>We propose an alternative conformal prediction algorithm that targets coverage where it matters most.
arXiv Detail & Related papers (2025-01-17T12:01:56Z) - Multi-model Ensemble Conformal Prediction in Dynamic Environments [14.188004615463742]
We introduce a novel adaptive conformal prediction framework, where the model used for creating prediction sets is selected on the fly from multiple candidate models.
The proposed algorithm is proven to achieve strongly adaptive regret over all intervals while maintaining valid coverage.
arXiv Detail & Related papers (2024-11-06T05:57:28Z) - Semiparametric conformal prediction [79.6147286161434]
We construct a conformal prediction set accounting for the joint correlation structure of the vector-valued non-conformity scores.<n>We flexibly estimate the joint cumulative distribution function (CDF) of the scores.<n>Our method yields desired coverage and competitive efficiency on a range of real-world regression problems.
arXiv Detail & Related papers (2024-11-04T14:29:02Z) - Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.<n>Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.<n>We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
arXiv Detail & Related papers (2024-10-13T15:37:11Z) - Split Conformal Prediction under Data Contamination [14.23965125128232]
We study the robustness of split conformal prediction in a data contamination setting.
We quantify the impact of corrupted data on the coverage and efficiency of the constructed sets.
We propose an adjustment in the classification setting which we call Contamination Robust Conformal Prediction.
arXiv Detail & Related papers (2024-07-10T14:33:28Z) - Post-selection Inference for Conformal Prediction: Trading off Coverage
for Precision [0.0]
Traditionally, conformal prediction inference requires a data-independent specification of miscoverage level.
We develop simultaneous conformal inference to account for data-dependent miscoverage levels.
arXiv Detail & Related papers (2023-04-12T20:56:43Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
split conformal prediction represents a promising avenue to obtain finite-sample guarantees under minimal distribution-free assumptions.
We highlight the connection between split conformal prediction and classical tolerance predictors developed in the 1940s.
arXiv Detail & Related papers (2022-10-26T14:12:24Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.