Diffmv: A Unified Diffusion Framework for Healthcare Predictions with Random Missing Views and View Laziness
- URL: http://arxiv.org/abs/2505.11802v1
- Date: Sat, 17 May 2025 03:15:55 GMT
- Title: Diffmv: A Unified Diffusion Framework for Healthcare Predictions with Random Missing Views and View Laziness
- Authors: Chuang Zhao, Hui Tang, Hongke Zhao, Xiaomeng Li,
- Abstract summary: We introduce Diffmv, an innovative diffusion-based generative framework designed to advance the exploitation of multiple views of EHR data.<n>Specifically, to address random missing views, we integrate various views of EHR data into a unified diffusion-denoising framework.<n>We propose a novel reweighting strategy that assesses the relative advantages of each view, promoting a balanced utilization of various data views within the model.
- Score: 19.729388432535142
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advanced healthcare predictions offer significant improvements in patient outcomes by leveraging predictive analytics. Existing works primarily utilize various views of Electronic Health Record (EHR) data, such as diagnoses, lab tests, or clinical notes, for model training. These methods typically assume the availability of complete EHR views and that the designed model could fully leverage the potential of each view. However, in practice, random missing views and view laziness present two significant challenges that hinder further improvements in multi-view utilization. To address these challenges, we introduce Diffmv, an innovative diffusion-based generative framework designed to advance the exploitation of multiple views of EHR data. Specifically, to address random missing views, we integrate various views of EHR data into a unified diffusion-denoising framework, enriched with diverse contextual conditions to facilitate progressive alignment and view transformation. To mitigate view laziness, we propose a novel reweighting strategy that assesses the relative advantages of each view, promoting a balanced utilization of various data views within the model. Our proposed strategy achieves superior performance across multiple health prediction tasks derived from three popular datasets, including multi-view and multi-modality scenarios.
Related papers
- Efficient Medical VIE via Reinforcement Learning [10.713109515157475]
Visual Information Extraction (VIE) converts unstructured document images into structured formats like, structured formats like, critical for medical applications like report analysis and online consultations.<n>Traditional methods rely on OCR and language models, while end-to-end multimodal models offer direct generation.<n>We base our approach on the Reinforcement Learning with Verifiable Rewards (RLVR) framework to address these challenges using only 100 annotated samples.
arXiv Detail & Related papers (2025-06-16T11:10:25Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.<n>Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.<n>Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.<n>Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - Visual Data Diagnosis and Debiasing with Concept Graphs [50.84781894621378]
We present ConBias, a framework for diagnosing and mitigating Concept co-occurrence Biases in visual datasets.
We show that by employing a novel clique-based concept balancing strategy, we can mitigate these imbalances, leading to enhanced performance on downstream tasks.
arXiv Detail & Related papers (2024-09-26T16:59:01Z) - A Unified Model for Longitudinal Multi-Modal Multi-View Prediction with Missingness [25.95298616599799]
We introduce a unified model for longitudinal multi-modal multi-view prediction with missingness.
Our method allows as many timepoints as desired for input, and aims to leverage all available data, regardless of their availability.
We conduct extensive experiments on the knee osteoarthritis dataset from the Osteoarthritis Initiative for pain and Kellgren-Lawrence grade prediction at a future timepoint.
arXiv Detail & Related papers (2024-03-18T19:51:55Z) - MPRE: Multi-perspective Patient Representation Extractor for Disease
Prediction [3.914545513460964]
We propose the Multi-perspective Patient Representation Extractor (MPRE) for disease prediction.
Specifically, we propose Frequency Transformation Module (FTM) to extract the trend and variation information of dynamic features.
In the 2D Multi-Extraction Network (2D MEN), we form the 2D temporal tensor based on trend and variation.
We also propose the First-Order Difference Attention Mechanism (FODAM) to calculate the contributions of differences in adjacent variations to the disease diagnosis.
arXiv Detail & Related papers (2024-01-01T13:52:05Z) - Progressive Multi-view Human Mesh Recovery with Self-Supervision [68.60019434498703]
Existing solutions typically suffer from poor generalization performance to new settings.
We propose a novel simulation-based training pipeline for multi-view human mesh recovery.
arXiv Detail & Related papers (2022-12-10T06:28:29Z) - Multi-Domain Balanced Sampling Improves Out-of-Distribution
Generalization of Chest X-ray Pathology Prediction Models [67.2867506736665]
We propose an idea for out-of-distribution generalization of chest X-ray pathologies that uses a simple balanced batch sampling technique.
We observed that balanced sampling between the multiple training datasets improves the performance over baseline models trained without balancing.
arXiv Detail & Related papers (2021-12-27T15:28:01Z) - Deep EHR Spotlight: a Framework and Mechanism to Highlight Events in
Electronic Health Records for Explainable Predictions [0.9176056742068812]
Deep learning techniques have demonstrated performance in predictive analytic tasks using EHRs.
EHRs contain heterogeneous and multi-modal data points which hinder visualisation and interpretability.
This paper proposes a deep learning framework to: 1) encode patient pathways from EHRs into images, 2) highlight important events within pathway images, and 3) enable more complex predictions with additional intelligibility.
arXiv Detail & Related papers (2021-03-25T22:30:14Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - A Variational Information Bottleneck Approach to Multi-Omics Data
Integration [98.6475134630792]
We propose a deep variational information bottleneck (IB) approach for incomplete multi-view observations.
Our method applies the IB framework on marginal and joint representations of the observed views to focus on intra-view and inter-view interactions that are relevant for the target.
Experiments on real-world datasets show that our method consistently achieves gain from data integration and outperforms state-of-the-art benchmarks.
arXiv Detail & Related papers (2021-02-05T06:05:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.