VITA: Versatile Time Representation Learning for Temporal Hyper-Relational Knowledge Graphs
- URL: http://arxiv.org/abs/2505.11803v1
- Date: Sat, 17 May 2025 03:16:13 GMT
- Title: VITA: Versatile Time Representation Learning for Temporal Hyper-Relational Knowledge Graphs
- Authors: ChongIn Un, Yuhuan Lu, Tianyue Yang, Dingqi Yang,
- Abstract summary: The temporal validity of facts often serves as a strong clue in downstream link prediction tasks.<n>We propose VITA, a versatile time representation that can flexibly accommodate all four types of temporal validity of facts.<n>We show that VITA outperforms the best-performing baselines in various link prediction tasks.
- Score: 2.1475990419358255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge graphs (KGs) have become an effective paradigm for managing real-world facts, which are not only complex but also dynamically evolve over time. The temporal validity of facts often serves as a strong clue in downstream link prediction tasks, which predicts a missing element in a fact. Traditional link prediction techniques on temporal KGs either consider a sequence of temporal snapshots of KGs with an ad-hoc defined time interval or expand a temporal fact over its validity period under a predefined time granularity; these approaches not only suffer from the sensitivity of the selection of time interval/granularity, but also face the computational challenges when handling facts with long (even infinite) validity. Although the recent hyper-relational KGs represent the temporal validity of a fact as qualifiers describing the fact, it is still suboptimal due to its ignorance of the infinite validity of some facts and the insufficient information encoded from the qualifiers about the temporal validity. Against this background, we propose VITA, a $\underline{V}$ersatile t$\underline{I}$me represen$\underline{TA}$tion learning method for temporal hyper-relational knowledge graphs. We first propose a versatile time representation that can flexibly accommodate all four types of temporal validity of facts (i.e., since, until, period, time-invariant), and then design VITA to effectively learn the time information in both aspects of time value and timespan to boost the link prediction performance. We conduct a thorough evaluation of VITA compared to a sizable collection of baselines on real-world KG datasets. Results show that VITA outperforms the best-performing baselines in various link prediction tasks (predicting missing entities, relations, time, and other numeric literals) by up to 75.3%. Ablation studies and a case study also support our key design choices.
Related papers
- Towards Foundation Model on Temporal Knowledge Graph Reasoning [17.165969719351125]
Temporal Knowledge Graphs (TKGs) store temporal facts with quadruple formats (s, p, o, t)<n>New model employs sinusoidal positional encodings to capture fine-grained temporal patterns.<n>PostRA demonstrates strong zero-shot performance on unseen temporal knowledge graphs.
arXiv Detail & Related papers (2025-06-04T09:19:49Z) - Learning Granularity Representation for Temporal Knowledge Graph Completion [2.689675451882683]
Temporal Knowledge Graphs (TKGs) incorporate temporal information to reflect the dynamic structural knowledge and evolutionary patterns of real-world facts.
This paper proposes textbfLearning textbfGranularity textbfRepresentation (termed $mathsfLGRe$) for TKG completion.
It comprises two main components: Granularity Learning (GRL) and Adaptive Granularity Balancing (AGB)
arXiv Detail & Related papers (2024-08-27T08:19:34Z) - Temporal Smoothness Regularisers for Neural Link Predictors [8.975480841443272]
We show that a simple method like TNTComplEx can produce significantly more accurate results than state-of-the-art methods.
We also evaluate the impact of a wide range of temporal smoothing regularisers on two state-of-the-art temporal link prediction models.
arXiv Detail & Related papers (2023-09-16T16:52:49Z) - Temporal Fact Reasoning over Hyper-Relational Knowledge Graphs [22.000981176155662]
We propose a new type of data structure named hyper-relational TKG (HTKG)
Every fact in an HTKG is coupled with a timestamp explicitly indicating its time validity.
To support future research on this topic, we open-source our datasets and model.
arXiv Detail & Related papers (2023-07-14T21:29:16Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - A Dataset for Answering Time-Sensitive Questions [88.95075983560331]
Time is an important dimension in our physical world. Lots of facts can evolve with respect to time.
It is important to consider the time dimension and empower the existing QA models to reason over time.
The existing QA datasets contain rather few time-sensitive questions, hence not suitable for diagnosing or benchmarking the model's temporal reasoning capability.
arXiv Detail & Related papers (2021-08-13T16:42:25Z) - Hyperbolic Temporal Knowledge Graph Embeddings with Relational and Time
Curvatures [0.12891210250935145]
More and more works consider time as a parameter to complete Knowledge Graphs (KGs)
We first demonstrate that, by simply increasing the number of negative samples, the recent AttH model can achieve competitive or even better performance than the state-of-the-art on Temporal KGs (TKGs)
Our experiments show that both Hercules and AttH achieve competitive or new state-of-the-art performances on ICEWS04 and ICEWS05-15 datasets.
arXiv Detail & Related papers (2021-06-08T13:13:43Z) - Interpretable Time-series Representation Learning With Multi-Level
Disentanglement [56.38489708031278]
Disentangle Time Series (DTS) is a novel disentanglement enhancement framework for sequential data.
DTS generates hierarchical semantic concepts as the interpretable and disentangled representation of time-series.
DTS achieves superior performance in downstream applications, with high interpretability of semantic concepts.
arXiv Detail & Related papers (2021-05-17T22:02:24Z) - Temporal Knowledge Graph Reasoning Based on Evolutional Representation
Learning [59.004025528223025]
Key to predict future facts is to thoroughly understand the historical facts.
A TKG is actually a sequence of KGs corresponding to different timestamps.
We propose a novel Recurrent Evolution network based on Graph Convolution Network (GCN)
arXiv Detail & Related papers (2021-04-21T05:12:21Z) - TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion [45.588053447288566]
Inferring missing facts in temporal knowledge graphs (TKGs) is a fundamental and challenging task.
We propose the Temporal Message Passing (TeMP) framework to address these challenges by combining graph neural networks, temporal dynamics models, data imputation and frequency-based gating techniques.
arXiv Detail & Related papers (2020-10-07T17:11:53Z) - Temporal Common Sense Acquisition with Minimal Supervision [77.8308414884754]
This work proposes a novel sequence modeling approach that exploits explicit and implicit mentions of temporal common sense.
Our method is shown to give quality predictions of various dimensions of temporal common sense.
It also produces representations of events for relevant tasks such as duration comparison, parent-child relations, event coreference and temporal QA.
arXiv Detail & Related papers (2020-05-08T22:20:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.