TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion
- URL: http://arxiv.org/abs/2010.03526v1
- Date: Wed, 7 Oct 2020 17:11:53 GMT
- Title: TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion
- Authors: Jiapeng Wu, Meng Cao, Jackie Chi Kit Cheung and William L. Hamilton
- Abstract summary: Inferring missing facts in temporal knowledge graphs (TKGs) is a fundamental and challenging task.
We propose the Temporal Message Passing (TeMP) framework to address these challenges by combining graph neural networks, temporal dynamics models, data imputation and frequency-based gating techniques.
- Score: 45.588053447288566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inferring missing facts in temporal knowledge graphs (TKGs) is a fundamental
and challenging task. Previous works have approached this problem by augmenting
methods for static knowledge graphs to leverage time-dependent representations.
However, these methods do not explicitly leverage multi-hop structural
information and temporal facts from recent time steps to enhance their
predictions. Additionally, prior work does not explicitly address the temporal
sparsity and variability of entity distributions in TKGs. We propose the
Temporal Message Passing (TeMP) framework to address these challenges by
combining graph neural networks, temporal dynamics models, data imputation and
frequency-based gating techniques. Experiments on standard TKG tasks show that
our approach provides substantial gains compared to the previous state of the
art, achieving a 10.7% average relative improvement in Hits@10 across three
standard benchmarks. Our analysis also reveals important sources of variability
both within and across TKG datasets, and we introduce several simple but strong
baselines that outperform the prior state of the art in certain settings.
Related papers
- History repeats Itself: A Baseline for Temporal Knowledge Graph Forecasting [10.396081172890025]
Temporal Knowledge Graph (TKG) Forecasting aims at predicting links in Knowledge Graphs for future timesteps based on a history of Knowledge Graphs.
We propose to design an intuitive baseline for TKG Forecasting based on predicting recurring facts.
arXiv Detail & Related papers (2024-04-25T16:39:32Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - TEILP: Time Prediction over Knowledge Graphs via Logical Reasoning [14.480267340831542]
We propose TEILP, a logical reasoning framework that naturally integrates temporal elements into knowledge graph predictions.
We first convert TKGs into a temporal event knowledge graph (TEKG) which has a more explicit representation of time in term of nodes of the graph.
Finally, we introduce conditional probability density functions, associated with the logical rules involving the query interval, using which we arrive at the time prediction.
arXiv Detail & Related papers (2023-12-25T21:54:56Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
This paper aims to design an easy-to-use pipeline (termed as EasyDGL) composed of three key modules with both strong ability fitting and interpretability.
EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
arXiv Detail & Related papers (2023-03-22T06:35:08Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
A key component of contrastive learning is to select appropriate augmentations imposing some priors to construct feasible positive samples.
How to find the desired augmentations of time series data that are meaningful for given contrastive learning tasks and datasets remains an open question.
We propose a new contrastive learning approach with information-aware augmentations, InfoTS, that adaptively selects optimal augmentations for time series representation learning.
arXiv Detail & Related papers (2023-03-21T15:02:50Z) - DyTed: Disentangled Representation Learning for Discrete-time Dynamic
Graph [59.583555454424]
We propose a novel disenTangled representation learning framework for discrete-time Dynamic graphs, namely DyTed.
We specially design a temporal-clips contrastive learning task together with a structure contrastive learning to effectively identify the time-invariant and time-varying representations respectively.
arXiv Detail & Related papers (2022-10-19T14:34:12Z) - A Simple Temporal Information Matching Mechanism for Entity Alignment
Between Temporal Knowledge Graphs [18.451872649228196]
We propose a simple graph neural network (GNN) model combined with a temporal information matching mechanism.
We also propose a method to generate unsupervised alignment seeds via the temporal information of TKG.
arXiv Detail & Related papers (2022-09-20T12:27:34Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - EvoKG: Jointly Modeling Event Time and Network Structure for Reasoning
over Temporal Knowledge Graphs [25.408246523764085]
Reasoning over temporal knowledge graphs (TKGs) is crucial for many applications to provide intelligent services.
We present a problem formulation that unifies the two major problems that need to be addressed for an effective reasoning over TKGs, namely, modeling the event time and the evolving network structure.
Our proposed method EvoKG jointly models both tasks in an effective framework, which captures the ever-changing structural and temporal dynamics in TKGs.
arXiv Detail & Related papers (2022-02-15T18:49:53Z) - T-GAP: Learning to Walk across Time for Temporal Knowledge Graph
Completion [13.209193437124881]
Temporal knowledge graphs (TKGs) inherently reflect the transient nature of real-world knowledge, as opposed to static knowledge graphs.
We propose T-GAP, a novel model for TKG completion that maximally utilizes both temporal information and graph structure in its encoder and decoder.
Our experiments demonstrate that T-GAP achieves superior performance against state-of-the-art baselines, and competently generalizes to queries with unseen timestamps.
arXiv Detail & Related papers (2020-12-19T04:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.