論文の概要: Retrospex: Language Agent Meets Offline Reinforcement Learning Critic
- arxiv url: http://arxiv.org/abs/2505.11807v2
- Date: Tue, 27 May 2025 01:30:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 14:37:19.546054
- Title: Retrospex: Language Agent Meets Offline Reinforcement Learning Critic
- Title(参考訳): Retrospex: 言語エージェントがオフライン強化学習批判に遭遇
- Authors: Yufei Xiang, Yiqun Shen, Yeqin Zhang, Cam-Tu Nguyen,
- Abstract要約: Retrospexは、過去の経験を深く分析するエージェントフレームワークである。
LLMの行動可能性と強化学習批判によって推定される行動値を組み合わせる。
我々は,ScienceWorld,ALFWorld,Webshop環境におけるRetrospexを評価した。
- 参考スコア(独自算出の注目度): 4.776906435812746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) possess extensive knowledge and commonsense reasoning capabilities, making them valuable for creating powerful agents. However, existing LLM agent frameworks have not fully utilized past experiences for improvement. This work introduces a new LLM-based agent framework called Retrospex, which addresses this challenge by analyzing past experiences in depth. Unlike previous approaches, Retrospex does not directly integrate experiences into the LLM's context. Instead, it combines the LLM's action likelihood with action values estimated by a Reinforcement Learning (RL) Critic, which is trained on past experiences through an offline ''retrospection'' process. Additionally, Retrospex employs a dynamic action rescoring mechanism that increases the importance of experience-based values for tasks that require more interaction with the environment. We evaluate Retrospex in ScienceWorld, ALFWorld and Webshop environments, demonstrating its advantages over strong, contemporary baselines.
- Abstract(参考訳): 大規模言語モデル (LLM) には豊富な知識と常識推論能力があり、強力なエージェントを作成するのに有用である。
しかし、既存のLLMエージェントフレームワークは改善のために過去の経験を完全に活用していない。
この研究は、Retrospexと呼ばれるLLMベースの新しいエージェントフレームワークを導入し、過去の経験を深く分析することでこの問題に対処する。
以前のアプローチとは異なり、Retrospex は LLM のコンテキストに体験を直接統合していない。
代わりに、LLMの行動可能性と強化学習(RL)批判(Reinforcement Learning (RL) Critic)によって推定されるアクション値を組み合わせる。
さらにRetrospexでは、環境とのよりインタラクションを必要とするタスクに対して、エクスペリエンスベースの値の重要性を高める動的アクションリスコリング機構を採用している。
我々は,ScienceWorld,ALFWorld,Webshop環境におけるRetrospexの評価を行い,その強靭な現代ベースラインに対する優位性を実証した。
関連論文リスト
- Training LLM-Based Agents with Synthetic Self-Reflected Trajectories and Partial Masking [61.61356842567952]
LLMに基づくエージェントトレーニングを改善するための新しい手法STePを提案する。
誤差ステップの反射や補正を含む自己反射軌道を合成する。
実験により,提案手法は3つの代表的なタスクにおいてエージェント性能を向上させることが示された。
論文 参考訳(メタデータ) (2025-05-26T14:11:12Z) - Training Agents with Weakly Supervised Feedback from Large Language Models [19.216542820742607]
本稿では,批判的LSMからの弱教師付き信号を用いたLSMエージェントの新しいトレーニング手法を提案する。
エージェントは反復的に訓練され、まず環境相互作用を通じて軌道を生成する。
API-bankデータセットのテストでは、エージェントの能力とGPT-4に匹敵するパフォーマンスが一貫して改善されている。
論文 参考訳(メタデータ) (2024-11-29T08:47:04Z) - RAG-Modulo: Solving Sequential Tasks using Experience, Critics, and Language Models [5.0741409008225755]
大規模言語モデル(LLM)は、ロボットの課題を解決するための有望なツールとして登場した。
既存のLSMベースのエージェントは、過去の相互作用を維持および学習する能力に欠ける。
RAG-Modulo は,過去のインタラクションを記憶した LLM ベースのエージェントを強化し,エージェントの判断を評価するための批判を取り入れたフレームワークである。
論文 参考訳(メタデータ) (2024-09-18T20:03:32Z) - RePrompt: Planning by Automatic Prompt Engineering for Large Language Models Agents [27.807695570974644]
LLMエージェントに与えられたプロンプトのステップバイステップ命令を最適化するために、段階的な降下を行う新しい方法、textscRePromptを提案する。
中間的なフィードバックを活用することで、 textscRePromptは最終的なソリューションチェッカーを必要とせずにプロンプトを最適化できる。
論文 参考訳(メタデータ) (2024-06-17T01:23:11Z) - GoEX: Perspectives and Designs Towards a Runtime for Autonomous LLM Applications [46.85306320942487]
大きな言語モデル(LLM)は、ツールに積極的に関与し、現実世界のアプリケーションやサービスでアクションを実行するために進化しています。
現在、人間はLLM生成した出力の正確さと適切性を検証し、それらを実世界の実行に投入している。
コードの理解は、悪名高いほど難しいことで知られています。
本稿では,人類が将来,自律LLMと効率的に協力し,委譲し,監督する方法について検討する。
論文 参考訳(メタデータ) (2024-04-10T11:17:33Z) - Agent-Pro: Learning to Evolve via Policy-Level Reflection and Optimization [53.510942601223626]
大規模言語モデル(LLM)は多様なタスクに対して堅牢な問題解決能力を示す。
これらのタスクソルバは、タスクルールを通知し、行動を調整するために手作業によるプロンプトを必要とする。
本稿では,ポリシーレベルのリフレクションと最適化を備えた LLM ベースのエージェントである Agent-Pro を提案する。
論文 参考訳(メタデータ) (2024-02-27T15:09:20Z) - Empowering Large Language Model Agents through Action Learning [85.39581419680755]
大規模言語モデル(LLM)エージェントは最近ますます関心を集めているが、試行錯誤から学ぶ能力は限られている。
我々は、経験から新しい行動を学ぶ能力は、LLMエージェントの学習の進歩に欠かせないものであると論じる。
我々はPython関数の形式でアクションを作成し改善するための反復学習戦略を備えたフレームワークLearningActを紹介した。
論文 参考訳(メタデータ) (2024-02-24T13:13:04Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
最近の大規模言語モデル(LLM)は、世代品質を改善するために人間のフィードバックを活用している。
LLMの出力を最適化する推論時間最適化手法であるLLMRefineを提案する。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
LLMRefineは、すべてのベースラインアプローチを一貫して上回り、翻訳タスクの1.7 MetricXポイント、ASQAの8.1 ROUGE-L、トピックの要約の2.2 ROUGE-Lの改善を実現している。
論文 参考訳(メタデータ) (2023-11-15T19:52:11Z) - ExpeL: LLM Agents Are Experiential Learners [57.13685954854463]
実験学習エージェント(ExpeL)を導入し、パラメトリック更新を必要とせずにエージェント体験から学習できるようにする。
我々のエージェントは、経験を自律的に収集し、学習課題の集合から自然言語を用いて知識を抽出する。
推論において、エージェントは抽出された洞察と過去の経験をリコールし、情報的決定を行う。
論文 参考訳(メタデータ) (2023-08-20T03:03:34Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。