Robust Cross-View Geo-Localization via Content-Viewpoint Disentanglement
- URL: http://arxiv.org/abs/2505.11822v1
- Date: Sat, 17 May 2025 04:10:32 GMT
- Title: Robust Cross-View Geo-Localization via Content-Viewpoint Disentanglement
- Authors: Ke Li, Di Wang, Xiaowei Wang, Zhihong Wu, Yiming Zhang, Yifeng Wang, Quan Wang,
- Abstract summary: Cross-view geo-localization (CVGL) aims to match images of the same geographic location captured from different perspectives, such as drones and satellites.<n>CVGL remains highly challenging due to significant appearance changes and spatial distortions caused by viewpoint variations.<n>We propose $textbfCVD$, a new CVGL framework that explicitly disentangles $textitcontent$ and $textitviewpoint$ factors.
- Score: 21.192114177279695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-view geo-localization (CVGL) aims to match images of the same geographic location captured from different perspectives, such as drones and satellites. Despite recent advances, CVGL remains highly challenging due to significant appearance changes and spatial distortions caused by viewpoint variations. Existing methods typically assume that cross-view images can be directly aligned within a shared feature space by maximizing feature similarity through contrastive learning. Nonetheless, this assumption overlooks the inherent conflicts induced by viewpoint discrepancies, resulting in extracted features containing inconsistent information that hinders precise localization. In this study, we take a manifold learning perspective and model the feature space of cross-view images as a composite manifold jointly governed by content and viewpoint information. Building upon this insight, we propose $\textbf{CVD}$, a new CVGL framework that explicitly disentangles $\textit{content}$ and $\textit{viewpoint}$ factors. To promote effective disentanglement, we introduce two constraints: $\textit{(i)}$ An intra-view independence constraint, which encourages statistical independence between the two factors by minimizing their mutual information. $\textit{(ii)}$ An inter-view reconstruction constraint that reconstructs each view by cross-combining $\textit{content}$ and $\textit{viewpoint}$ from paired images, ensuring factor-specific semantics are preserved. As a plug-and-play module, CVD can be seamlessly integrated into existing geo-localization pipelines. Extensive experiments on four benchmarks, i.e., University-1652, SUES-200, CVUSA, and CVACT, demonstrate that CVD consistently improves both localization accuracy and generalization across multiple baselines.
Related papers
- Dynamic Contrastive Learning for Hierarchical Retrieval: A Case Study of Distance-Aware Cross-View Geo-Localization [20.868592923432843]
Existing deep learning-based cross-view geo-localization methods primarily focus on improving the accuracy of cross-domain image matching.<n>We propose Dynamic Contrastive Learning (DyCL), a novel framework that progressively aligns feature representations according to hierarchical spatial margins.
arXiv Detail & Related papers (2025-06-29T03:57:01Z) - Zero-P-to-3: Zero-Shot Partial-View Images to 3D Object [55.93553895520324]
We propose a novel training-free approach that integrates local dense observations and multi-source priors for reconstruction.<n>Our method introduces a fusion-based strategy to effectively align these priors in DDIM sampling, thereby generating multi-view consistent images to supervise invisible views.
arXiv Detail & Related papers (2025-05-29T03:51:37Z) - Breaking the Frame: Visual Place Recognition by Overlap Prediction [53.17564423756082]
We propose a novel visual place recognition approach based on overlap prediction, called VOP.<n>VOP proceeds co-visible image sections by obtaining patch-level embeddings using a Vision Transformer backbone.<n>Our approach uses a voting mechanism to assess overlap scores for potential database images.
arXiv Detail & Related papers (2024-06-23T20:00:20Z) - Unleashing Unlabeled Data: A Paradigm for Cross-View Geo-Localization [28.941724648519102]
This paper investigates the effective utilization of unlabeled data for large-area cross-view geo-localization (CVGL)
Common approaches to CVGL rely on ground-satellite image pairs and employ label-driven supervised training.
We propose an unsupervised framework including a cross-view projection to guide the model for retrieving initial pseudo-labels.
arXiv Detail & Related papers (2024-03-21T07:48:35Z) - SDPL: Shifting-Dense Partition Learning for UAV-View Geo-Localization [27.131867916908156]
Cross-view geo-localization aims to match images of the same target from different platforms.
We introduce part-based representation learning, shifting-dense partition learning.
We show that SDPL is robust to position shifting, and performs com-petitively on two prevailing benchmarks.
arXiv Detail & Related papers (2024-03-07T03:07:54Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Occ$^2$Net: Robust Image Matching Based on 3D Occupancy Estimation for
Occluded Regions [14.217367037250296]
Occ$2$Net is an image matching method that models occlusion relations using 3D occupancy and infers matching points in occluded regions.
We evaluate our method on both real-world and simulated datasets and demonstrate its superior performance over state-of-the-art methods on several metrics.
arXiv Detail & Related papers (2023-08-14T13:09:41Z) - Multi-Spectral Image Stitching via Spatial Graph Reasoning [52.27796682972484]
We propose a spatial graph reasoning based multi-spectral image stitching method.
We embed multi-scale complementary features from the same view position into a set of nodes.
By introducing long-range coherence along spatial and channel dimensions, the complementarity of pixel relations and channel interdependencies aids in the reconstruction of aligned multi-view features.
arXiv Detail & Related papers (2023-07-31T15:04:52Z) - Sample4Geo: Hard Negative Sampling For Cross-View Geo-Localisation [2.3020018305241337]
We present a simplified but effective architecture based on contrastive learning with symmetric InfoNCE loss.
Our framework consists of a narrow training pipeline that eliminates the need of using aggregation modules.
Our work shows excellent performance on common cross-view datasets like CVUSA, CVACT, University-1652 and VIGOR.
arXiv Detail & Related papers (2023-03-21T13:49:49Z) - Cross-view Geo-localization via Learning Disentangled Geometric Layout
Correspondence [11.823147814005411]
Cross-view geo-localization aims to estimate the location of a query ground image by matching it to a reference geo-tagged aerial images database.
Recent works achieve outstanding progress on cross-view geo-localization benchmarks.
However, existing methods still suffer from poor performance on the cross-area benchmarks.
arXiv Detail & Related papers (2022-12-08T04:54:01Z) - Region Similarity Representation Learning [94.88055458257081]
Region Similarity Representation Learning (ReSim) is a new approach to self-supervised representation learning for localization-based tasks.
ReSim learns both regional representations for localization as well as semantic image-level representations.
We show how ReSim learns representations which significantly improve the localization and classification performance compared to a competitive MoCo-v2 baseline.
arXiv Detail & Related papers (2021-03-24T00:42:37Z) - Inter-Image Communication for Weakly Supervised Localization [77.2171924626778]
Weakly supervised localization aims at finding target object regions using only image-level supervision.
We propose to leverage pixel-level similarities across different objects for learning more accurate object locations.
Our method achieves the Top-1 localization error rate of 45.17% on the ILSVRC validation set.
arXiv Detail & Related papers (2020-08-12T04:14:11Z) - Where am I looking at? Joint Location and Orientation Estimation by
Cross-View Matching [95.64702426906466]
Cross-view geo-localization is a problem given a large-scale database of geo-tagged aerial images.
Knowing orientation between ground and aerial images can significantly reduce matching ambiguity between these two views.
We design a Dynamic Similarity Matching network to estimate cross-view orientation alignment during localization.
arXiv Detail & Related papers (2020-05-08T05:21:16Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.