Occ$^2$Net: Robust Image Matching Based on 3D Occupancy Estimation for
Occluded Regions
- URL: http://arxiv.org/abs/2308.16160v1
- Date: Mon, 14 Aug 2023 13:09:41 GMT
- Title: Occ$^2$Net: Robust Image Matching Based on 3D Occupancy Estimation for
Occluded Regions
- Authors: Miao Fan, Mingrui Chen, Chen Hu, Shuchang Zhou
- Abstract summary: Occ$2$Net is an image matching method that models occlusion relations using 3D occupancy and infers matching points in occluded regions.
We evaluate our method on both real-world and simulated datasets and demonstrate its superior performance over state-of-the-art methods on several metrics.
- Score: 14.217367037250296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image matching is a fundamental and critical task in various visual
applications, such as Simultaneous Localization and Mapping (SLAM) and image
retrieval, which require accurate pose estimation. However, most existing
methods ignore the occlusion relations between objects caused by camera motion
and scene structure. In this paper, we propose Occ$^2$Net, a novel image
matching method that models occlusion relations using 3D occupancy and infers
matching points in occluded regions. Thanks to the inductive bias encoded in
the Occupancy Estimation (OE) module, it greatly simplifies bootstrapping of a
multi-view consistent 3D representation that can then integrate information
from multiple views. Together with an Occlusion-Aware (OA) module, it
incorporates attention layers and rotation alignment to enable matching between
occluded and visible points. We evaluate our method on both real-world and
simulated datasets and demonstrate its superior performance over
state-of-the-art methods on several metrics, especially in occlusion scenarios.
Related papers
- Self-supervised 3D Point Cloud Completion via Multi-view Adversarial Learning [61.14132533712537]
We propose MAL-SPC, a framework that effectively leverages both object-level and category-specific geometric similarities to complete missing structures.
Our MAL-SPC does not require any 3D complete supervision and only necessitates a single partial point cloud for each object.
arXiv Detail & Related papers (2024-07-13T06:53:39Z) - DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses [59.51874686414509]
Current approaches approximate the continuous pose representation with a large number of discrete pose hypotheses.
We present a Deep Voxel Matching Network (DVMNet) that eliminates the need for pose hypotheses and computes the relative object pose in a single pass.
Our method delivers more accurate relative pose estimates for novel objects at a lower computational cost compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-03-20T15:41:32Z) - LFM-3D: Learnable Feature Matching Across Wide Baselines Using 3D
Signals [9.201550006194994]
Learnable matchers often underperform when there exists only small regions of co-visibility between image pairs.
We propose LFM-3D, a Learnable Feature Matching framework that uses models based on graph neural networks.
We show that the resulting improved correspondences lead to much higher relative posing accuracy for in-the-wild image pairs.
arXiv Detail & Related papers (2023-03-22T17:46:27Z) - Explicit3D: Graph Network with Spatial Inference for Single Image 3D
Object Detection [35.85544715234846]
We propose a dynamic sparse graph pipeline named Explicit3D based on object geometry and semantics features.
Our experimental results on the SUN RGB-D dataset demonstrate that our Explicit3D achieves better performance balance than the-state-of-the-art.
arXiv Detail & Related papers (2023-02-13T16:19:54Z) - Occupancy Planes for Single-view RGB-D Human Reconstruction [120.5818162569105]
Single-view RGB-D human reconstruction with implicit functions is often formulated as per-point classification.
We propose the occupancy planes (OPlanes) representation, which enables to formulate single-view RGB-D human reconstruction as occupancy prediction on planes which slice through the camera's view frustum.
arXiv Detail & Related papers (2022-08-04T17:59:56Z) - Sim2Real Object-Centric Keypoint Detection and Description [40.58367357980036]
Keypoint detection and description play a central role in computer vision.
We propose the object-centric formulation, which requires further identifying which object each interest point belongs to.
We develop a sim2real contrastive learning mechanism that can generalize the model trained in simulation to real-world applications.
arXiv Detail & Related papers (2022-02-01T15:00:20Z) - Learning Stereopsis from Geometric Synthesis for 6D Object Pose
Estimation [11.999630902627864]
Current monocular-based 6D object pose estimation methods generally achieve less competitive results than RGBD-based methods.
This paper proposes a 3D geometric volume based pose estimation method with a short baseline two-view setting.
Experiments show that our method outperforms state-of-the-art monocular-based methods, and is robust in different objects and scenes.
arXiv Detail & Related papers (2021-09-25T02:55:05Z) - IAFA: Instance-aware Feature Aggregation for 3D Object Detection from a
Single Image [37.83574424518901]
3D object detection from a single image is an important task in Autonomous Driving.
We propose an instance-aware approach to aggregate useful information for improving the accuracy of 3D object detection.
arXiv Detail & Related papers (2021-03-05T05:47:52Z) - AdaFuse: Adaptive Multiview Fusion for Accurate Human Pose Estimation in
the Wild [77.43884383743872]
We present AdaFuse, an adaptive multiview fusion method to enhance the features in occluded views.
We extensively evaluate the approach on three public datasets including Human3.6M, Total Capture and CMU Panoptic.
We also create a large scale synthetic dataset Occlusion-Person, which allows us to perform numerical evaluation on the occluded joints.
arXiv Detail & Related papers (2020-10-26T03:19:46Z) - Object-Centric Multi-View Aggregation [86.94544275235454]
We present an approach for aggregating a sparse set of views of an object in order to compute a semi-implicit 3D representation in the form of a volumetric feature grid.
Key to our approach is an object-centric canonical 3D coordinate system into which views can be lifted, without explicit camera pose estimation.
We show that computing a symmetry-aware mapping from pixels to the canonical coordinate system allows us to better propagate information to unseen regions.
arXiv Detail & Related papers (2020-07-20T17:38:31Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.