VeriReason: Reinforcement Learning with Testbench Feedback for Reasoning-Enhanced Verilog Generation
- URL: http://arxiv.org/abs/2505.11849v1
- Date: Sat, 17 May 2025 05:25:01 GMT
- Title: VeriReason: Reinforcement Learning with Testbench Feedback for Reasoning-Enhanced Verilog Generation
- Authors: Yiting Wang, Guoheng Sun, Wanghao Ye, Gang Qu, Ang Li,
- Abstract summary: We introduce VeriReason, a framework integrating supervised fine-tuning with Guided Reward Proximal Optimization (GRPO) reinforcement learning for RTL generation.<n>On the VerilogEval Benchmark, VeriReason delivers 83.1% functional correctness, substantially outperforming both comparable-sized models and much larger commercial systems like GPT-4 Turbo.<n>VeriReason represents the first system to successfully integrate explicit reasoning capabilities with reinforcement learning for Verilog generation, establishing a new state-of-the-art for automated RTL synthesis.
- Score: 9.07044866283158
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automating Register Transfer Level (RTL) code generation using Large Language Models (LLMs) offers substantial promise for streamlining digital circuit design and reducing human effort. However, current LLM-based approaches face significant challenges with training data scarcity, poor specification-code alignment, lack of verification mechanisms, and balancing generalization with specialization. Inspired by DeepSeek-R1, we introduce VeriReason, a framework integrating supervised fine-tuning with Guided Reward Proximal Optimization (GRPO) reinforcement learning for RTL generation. Using curated training examples and a feedback-driven reward model, VeriReason combines testbench evaluations with structural heuristics while embedding self-checking capabilities for autonomous error correction. On the VerilogEval Benchmark, VeriReason delivers significant improvements: achieving 83.1% functional correctness on the VerilogEval Machine benchmark, substantially outperforming both comparable-sized models and much larger commercial systems like GPT-4 Turbo. Additionally, our approach demonstrates up to a 2.8X increase in first-attempt functional correctness compared to baseline methods and exhibits robust generalization to unseen designs. To our knowledge, VeriReason represents the first system to successfully integrate explicit reasoning capabilities with reinforcement learning for Verilog generation, establishing a new state-of-the-art for automated RTL synthesis. The models and datasets are available at: https://huggingface.co/collections/AI4EDA-CASE Code is Available at: https://github.com/NellyW8/VeriReason
Related papers
- DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation [68.19756761027351]
Diffusion large language models (dLLMs) are compelling alternatives to autoregressive (AR) models.<n>We investigate their denoising processes and reinforcement learning methods.<n>Our work provides deeper insight into the machinery of dLLM generation and offers an effective, diffusion-native RL training framework.
arXiv Detail & Related papers (2025-06-25T17:35:47Z) - VerIF: Verification Engineering for Reinforcement Learning in Instruction Following [55.60192044049083]
Reinforcement learning with verifiable rewards (RLVR) has become a key technique for enhancing large language models (LLMs)<n>We propose VerIF, a verification method that combines rule-based code verification with LLM-based verification from a large reasoning model.<n>We apply RL training with VerIF to two models, achieving significant improvements across several representative instruction-following benchmarks.
arXiv Detail & Related papers (2025-06-11T17:10:36Z) - KARE-RAG: Knowledge-Aware Refinement and Enhancement for RAG [63.82127103851471]
Retrieval-Augmented Generation (RAG) enables large language models to access broader knowledge sources.<n>We demonstrate that enhancing generative models' capacity to process noisy content is equally critical for robust performance.<n>We present KARE-RAG, which improves knowledge utilization through three key innovations.
arXiv Detail & Related papers (2025-06-03T06:31:17Z) - Insights from Verification: Training a Verilog Generation LLM with Reinforcement Learning with Testbench Feedback [36.69082579950107]
Large language models (LLMs) have shown strong performance in Verilog generation from natural language description.<n>This paper introduces a method that integrates verification insights from testbench into the training of Verilog generation LLMs.
arXiv Detail & Related papers (2025-04-22T11:38:14Z) - Learning to Solve and Verify: A Self-Play Framework for Code and Test Generation [69.62857948698436]
Recent advances in large language models (LLMs) have improved their performance on coding benchmarks.<n>However, improvement is plateauing due to the exhaustion of readily available high-quality data.<n>We propose Sol-Ver, a self-play solver-verifier framework that jointly improves a single model's code and test generation capacity.
arXiv Detail & Related papers (2025-02-20T18:32:19Z) - SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation [14.786100203787194]
Large language models demonstrate exceptional performance in simple code generation tasks but face challenges in tackling complex problems.<n>We propose a reasoning-augmented data generation process, SRA-MCTS, which guides the model to autonomously generate high-quality intermediate reasoning paths.<n>Our method operates entirely through the model itself without requiring additional supervision.
arXiv Detail & Related papers (2024-11-17T12:31:04Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.