論文の概要: PRS-Med: Position Reasoning Segmentation with Vision-Language Model in Medical Imaging
- arxiv url: http://arxiv.org/abs/2505.11872v2
- Date: Thu, 22 May 2025 08:00:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 12:25:14.989639
- Title: PRS-Med: Position Reasoning Segmentation with Vision-Language Model in Medical Imaging
- Title(参考訳): PRS-Med: 医用画像における視線モデルを用いた位置推論セグメンテーション
- Authors: Quoc-Huy Trinh, Minh-Van Nguyen, Jung Peng, Ulas Bagci, Debesh Jha,
- Abstract要約: PRS-Medは、視覚言語モデルとセグメンテーション機能を統合し、正確なセグメンテーションマスクとそれに対応する空間推論出力の両方を生成するフレームワークである。
MMRSデータセットは、医療画像における位置推論データの欠如に対処するために、多様な空間的な質問応答ペアを提供する。
- 参考スコア(独自算出の注目度): 6.411386758550256
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recent advancements in prompt-based medical image segmentation have enabled clinicians to identify tumors using simple input like bounding boxes or text prompts. However, existing methods face challenges when doctors need to interact through natural language or when position reasoning is required - understanding spatial relationships between anatomical structures and pathologies. We present PRS-Med, a framework that integrates vision-language models with segmentation capabilities to generate both accurate segmentation masks and corresponding spatial reasoning outputs. Additionally, we introduce the MMRS dataset (Multimodal Medical in Positional Reasoning Segmentation), which provides diverse, spatially-grounded question-answer pairs to address the lack of position reasoning data in medical imaging. PRS-Med demonstrates superior performance across six imaging modalities (CT, MRI, X-ray, ultrasound, endoscopy, RGB), significantly outperforming state-of-the-art methods in both segmentation accuracy and position reasoning. Our approach enables intuitive doctor-system interaction through natural language, facilitating more efficient diagnoses. Our dataset pipeline, model, and codebase will be released to foster further research in spatially-aware multimodal reasoning for medical applications.
- Abstract(参考訳): プロンプトベースの医用画像セグメント化の最近の進歩により、臨床医はバウンディングボックスやテキストプロンプトのような単純な入力を用いて腫瘍を識別できるようになった。
しかし、既存の手法では、医師が自然言語で対話する必要がある場合や、位置推論が必要な場合、解剖学的構造と病理の間の空間的関係を理解する必要がある場合、課題に直面している。
PRS-Medは、視覚言語モデルとセグメンテーション機能を統合し、正確なセグメンテーションマスクとそれに対応する空間推論出力の両方を生成するフレームワークである。
さらに,MMRSデータセット(Multimodal Medical in Positional Reasoning Segmentation)を導入し,医療画像における位置推定データの欠如に対処するために,多様な空間的質問応答ペアを提供する。
PRS-Medは、CT、MRI、X線、超音波、内視鏡、RGBの6つの画像モダリティにおいて優れた性能を示し、セグメンテーション精度と位置推定の両方において、最先端の手法よりも優れている。
我々のアプローチは、自然言語による直感的な医師・システム間相互作用を可能にし、より効率的な診断を容易にする。
我々のデータセットパイプライン、モデル、コードベースは、医療応用のための空間的に認識されたマルチモーダル推論のさらなる研究を促進するためにリリースされます。
関連論文リスト
- Reinforced Correlation Between Vision and Language for Precise Medical AI Assistant [11.187690318227514]
RCMedは、入力と出力の両方におけるマルチモーダルアライメントを改善するフルスタックAIアシスタントである。
不規則な病変と微妙な解剖学的境界の文脈化において最先端の精度を達成する。
論文 参考訳(メタデータ) (2025-05-06T10:00:08Z) - MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
稀ながら臨床的に重要な画像モダリティのための医用画像分割モデルの訓練は、注釈付きデータの不足により困難である。
本稿では、生成モデルを利用してトレーニングデータを合成し、未表現のモダリティに対するセグメンテーションモデルを訓練する。
論文 参考訳(メタデータ) (2024-12-04T16:34:22Z) - A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
医療ビジョン・アンド・ランゲージモデル(MVLM)は、複雑な医療データを解釈するための自然言語インタフェースを提供する能力から、大きな関心を集めている。
本稿では,MVLMの概要と適用した各種医療課題について概観する。
また、これらのタスクに使用するデータセットについても検討し、標準化された評価指標に基づいて異なるモデルの性能を比較した。
論文 参考訳(メタデータ) (2024-11-19T03:27:05Z) - LIMIS: Towards Language-based Interactive Medical Image Segmentation [58.553786162527686]
LIMISは、最初の純粋言語に基づく対話型医療画像分割モデルである。
我々は、Grounded SAMを医療領域に適応させ、言語に基づくモデルインタラクション戦略を設計する。
LIMISを3つの公開医療データセット上で,パフォーマンスとユーザビリティの観点から評価した。
論文 参考訳(メタデータ) (2024-10-22T12:13:47Z) - Segment as You Wish -- Free-Form Language-Based Segmentation for Medical Images [30.673958586581904]
フリーフォームなテキストプロンプトを処理する新しい医用画像セグメンテーションモデルであるFLanSを紹介する。
FLanSは、7つの公開データセットから100万以上の医療画像の大規模なデータセットでトレーニングされている。
論文 参考訳(メタデータ) (2024-10-02T16:34:32Z) - D-Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions [8.50767187405446]
ドメイン固有の対話型無線支援ツールD-Raxを提案する。
我々は胸部X線(CXR)画像の会話解析を強化し,放射線学的報告を支援する。
オープン・エンド・会話とクローズド・会話の双方において,反応の統計的に有意な改善が認められた。
論文 参考訳(メタデータ) (2024-07-02T18:43:10Z) - Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
我々は,空間的・時間的微粒なモデリングのためのMed-STフレームワークを提案する。
空間モデリングでは、Med-STはMixture of View Expert (MoVE)アーキテクチャを使用して、正面と横の両方のビューから異なる視覚的特徴を統合する。
時間的モデリングのために,フォワードマッピング分類 (FMC) とリバースマッピング回帰 (RMR) による新たな双方向サイクル整合性目標を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:15:09Z) - Exploring Transfer Learning in Medical Image Segmentation using Vision-Language Models [0.8878802873945023]
本研究では,視覚言語モデルから2次元医用画像への移行に関する最初の体系的研究を紹介する。
VLSMは画像のみのセグメンテーションモデルと比較して競合性能を示すが、全てのVLSMは言語プロンプトから追加情報を利用するわけではない。
論文 参考訳(メタデータ) (2023-08-15T11:28:21Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language Models [72.8965643836841]
我々は,会話型医療ビジョン言語モデルであるXrayGPTを紹介する。
胸部X線写真に関するオープンエンドの質問を分析し、答えることができる。
自由テキストラジオグラフィーレポートから217kの対話的かつ高品質な要約を生成する。
論文 参考訳(メタデータ) (2023-06-13T17:59:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。