ChartEdit: How Far Are MLLMs From Automating Chart Analysis? Evaluating MLLMs' Capability via Chart Editing
- URL: http://arxiv.org/abs/2505.11935v1
- Date: Sat, 17 May 2025 09:47:15 GMT
- Title: ChartEdit: How Far Are MLLMs From Automating Chart Analysis? Evaluating MLLMs' Capability via Chart Editing
- Authors: Xuanle Zhao, Xuexin Liu, Haoyue Yang, Xianzhen Luo, Fanhu Zeng, Jianling Li, Qi Shi, Chi Chen,
- Abstract summary: multimodal large language models (MLLMs) show promise in generating chart rendering code, but chart editing presents a greater challenge.<n>We propose ChartEdit, a new high-quality benchmark designed for chart editing tasks.<n>We evaluate the performance of 10 mainstream MLLMs across two types of experiments, assessing them at both the code and chart levels.
- Score: 6.671042213908933
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although multimodal large language models (MLLMs) show promise in generating chart rendering code, chart editing presents a greater challenge. This difficulty stems from its nature as a labor-intensive task for humans that also demands MLLMs to integrate chart understanding, complex reasoning, and precise intent interpretation. While many MLLMs claim such editing capabilities, current assessments typically rely on limited case studies rather than robust evaluation methodologies, highlighting the urgent need for a comprehensive evaluation framework. In this work, we propose ChartEdit, a new high-quality benchmark designed for chart editing tasks. This benchmark comprises $1,405$ diverse editing instructions applied to $233$ real-world charts, with each instruction-chart instance having been manually annotated and validated for accuracy. Utilizing ChartEdit, we evaluate the performance of 10 mainstream MLLMs across two types of experiments, assessing them at both the code and chart levels. The results suggest that large-scale models can generate code to produce images that partially match the reference images. However, their ability to generate accurate edits according to the instructions remains limited. The state-of-the-art (SOTA) model achieves a score of only $59.96$, highlighting significant challenges in precise modification. In contrast, small-scale models, including chart-domain models, struggle both with following editing instructions and generating overall chart images, underscoring the need for further development in this area. Code is available at https://github.com/xxlllz/ChartEdit.
Related papers
- ChartM$^3$: Benchmarking Chart Editing with Multimodal Instructions [65.21061221740388]
We introduce a novel paradigm for multimodal chart editing, where user intent is expressed through a combination of natural language and visual indicators.<n>We present Chart$textM3$, a new benchmark for Multimodal chart editing with Multi-level complexity and Multi-perspective evaluation.
arXiv Detail & Related papers (2025-07-25T13:30:14Z) - ChartLens: Fine-grained Visual Attribution in Charts [106.44872805609673]
Post-Hoc Visual Attribution for Charts identifies fine-grained chart elements that validate a given chart-associated response.<n>We propose ChartLens, a novel chart attribution algorithm that uses segmentation-based techniques to identify chart objects.<n>Our evaluations show that ChartLens improves fine-grained attributions by 26-66%.
arXiv Detail & Related papers (2025-05-25T23:17:32Z) - Socratic Chart: Cooperating Multiple Agents for Robust SVG Chart Understanding [14.75820681491341]
Existing benchmarks reveal reliance on text-based shortcuts and probabilistic pattern-matching rather than genuine visual reasoning.<n>We propose Socratic Chart, a new framework that transforms chart images into Scalable Vector Graphics representations.<n>Our framework surpasses state-of-the-art models in accurately capturing chart primitives and improving reasoning performance.
arXiv Detail & Related papers (2025-04-14T00:07:39Z) - RefChartQA: Grounding Visual Answer on Chart Images through Instruction Tuning [63.599057862999]
RefChartQA is a novel benchmark that integrates Chart Question Answering (ChartQA) with visual grounding.<n>Our experiments demonstrate that incorporating spatial awareness via grounding improves response accuracy by over 15%.
arXiv Detail & Related papers (2025-03-29T15:50:08Z) - ChartCoder: Advancing Multimodal Large Language Model for Chart-to-Code Generation [90.82566869965011]
textbfChartCoder is the first dedicated chart-to-code MLLM.<n>We introduce textbfChart2Code-160k, the first large-scale and diverse dataset for chart-to-code generation.<n> Experiments demonstrate that ChartCoder, with only 7B parameters, surpasses existing open-source MLLMs on chart-to-code benchmarks.
arXiv Detail & Related papers (2025-01-11T17:52:22Z) - TinyChart: Efficient Chart Understanding with Visual Token Merging and Program-of-Thoughts Learning [83.58521787193293]
We present TinyChart, an efficient MLLM for chart understanding with only 3B parameters.
TinyChart overcomes two key challenges in efficient chart understanding: (1) reduce the burden of learning numerical computations through a Program-of-Thoughts (PoT) learning strategy, and (2) reduce lengthy vision feature sequences produced by the vision transformer for high-resolution images through a Vision Token Merging module.
arXiv Detail & Related papers (2024-04-25T14:23:24Z) - ChartX & ChartVLM: A Versatile Benchmark and Foundation Model for Complicated Chart Reasoning [55.22996841790139]
We benchmark the ability of off-the-shelf Multi-modal Large Language Models (MLLMs) in the chart domain.<n>We construct ChartX, a multi-modal evaluation set covering 18 chart types, 7 chart tasks, 22 disciplinary topics, and high-quality chart data.<n>We develop ChartVLM to offer a new perspective on handling multi-modal tasks that strongly depend on interpretable patterns.
arXiv Detail & Related papers (2024-02-19T14:48:23Z) - ChartBench: A Benchmark for Complex Visual Reasoning in Charts [36.492851648081405]
Multimodal Large Language Models (MLLMs) have shown impressive capabilities in image understanding and generation.
Current benchmarks fail to accurately evaluate the chart comprehension of MLLMs due to limited chart types and inappropriate metrics.
We propose ChartBench, a comprehensive benchmark designed to assess chart comprehension and data reliability through complex visual reasoning.
arXiv Detail & Related papers (2023-12-26T07:20:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.