Variance-Optimal Arm Selection: Regret Minimization and Best Arm Identification
- URL: http://arxiv.org/abs/2505.11985v2
- Date: Tue, 20 May 2025 17:01:38 GMT
- Title: Variance-Optimal Arm Selection: Regret Minimization and Best Arm Identification
- Authors: Sabrina Khurshid, Gourab Ghatak, Mohammad Shahid Abdulla,
- Abstract summary: We develop an online algorithm called textttUCB-VV for the regret setting and show that its upper bound on regret for bounded rewards evolves as $mathcalOleft(lognright)$.<n>We extend the framework from bounded distributions to sub-Gaussian distributions using a novel concentration inequality on the sample variance.
- Score: 3.5502600490147196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper focuses on selecting the arm with the highest variance from a set of $K$ independent arms. Specifically, we focus on two settings: (i) regret setting, that penalizes the number of pulls of suboptimal arms in terms of variance, and (ii) fixed-budget BAI setting, that evaluates the ability of an algorithm to determine the arm with the highest variance after a fixed number of pulls. We develop a novel online algorithm called \texttt{UCB-VV} for the regret setting and show that its upper bound on regret for bounded rewards evolves as $\mathcal{O}\left(\log{n}\right)$ where $n$ is the horizon. By deriving the lower bound on the regret, we show that \texttt{UCB-VV} is order optimal. For the fixed budget BAI setting, we propose the \texttt{SHVV} algorithm. We show that the upper bound of the error probability of \texttt{SHVV} evolves as $\exp\left(-\frac{n}{\log(K) H}\right)$, where $H$ represents the complexity of the problem, and this rate matches the corresponding lower bound. We extend the framework from bounded distributions to sub-Gaussian distributions using a novel concentration inequality on the sample variance. Leveraging the same, we derive a concentration inequality for the empirical Sharpe ratio (SR) for sub-Gaussian distributions, which was previously unknown in the literature. Empirical simulations show that \texttt{UCB-VV} consistently outperforms \texttt{$\epsilon$-greedy} across different sub-optimality gaps, though it is surpassed by \texttt{VTS}, which exhibits the lowest regret, albeit lacking in theoretical guarantees. We also illustrate the superior performance of \texttt{SHVV}, for a fixed budget setting under 6 different setups against uniform sampling. Finally, we conduct a case study to empirically evaluate the performance of the \texttt{UCB-VV} and \texttt{SHVV} in call option trading on $100$ stocks generated using geometric Brownian motion (GBM).
Related papers
- A New Benchmark for Online Learning with Budget-Balancing Constraints [14.818946657685267]
We present a new benchmark to compare against, motivated both by real-world applications such as autobidding and by its underlying mathematical structure.<n>We show that sublinear regret is attainable against any strategy whose spending pattern is within $o(T2)$ of any sub-linear spending pattern.
arXiv Detail & Related papers (2025-03-19T00:14:20Z) - Continuous K-Max Bandits [54.21533414838677]
We study the $K$-Max multi-armed bandits problem with continuous outcome distributions and weak value-index feedback.<n>This setting captures critical applications in recommendation systems, distributed computing, server scheduling, etc.<n>Our key contribution is the computationally efficient algorithm DCK-UCB, which combines adaptive discretization with bias-corrected confidence bounds.
arXiv Detail & Related papers (2025-02-19T06:37:37Z) - Concurrent Learning with Aggregated States via Randomized Least Squares Value Iteration [40.73142019282658]
We study whether injecting randomization can help a society of agents it concurently explore an environment.<n>We demonstrate worst-case regret bounds in both finite- and infinite-horizon environments.<n>We reduce the space complexity by a factor of $K$ while incurring only a $sqrtK$ increase in the worst-case regret bound.
arXiv Detail & Related papers (2025-01-23T05:37:33Z) - Variance-Dependent Regret Bounds for Non-stationary Linear Bandits [52.872628573907434]
We propose algorithms that utilize the variance of the reward distribution as well as the $B_K$, and show that they can achieve tighter regret upper bounds.
We introduce two novel algorithms: Restarted Weighted$textOFUL+$ and Restarted $textSAVE+$.
Notably, when the total variance $V_K$ is much smaller than $K$, our algorithms outperform previous state-of-the-art results on non-stationary linear bandits under different settings.
arXiv Detail & Related papers (2024-03-15T23:36:55Z) - Variance-Aware Regret Bounds for Stochastic Contextual Dueling Bandits [53.281230333364505]
This paper studies the problem of contextual dueling bandits, where the binary comparison of dueling arms is generated from a generalized linear model (GLM)
We propose a new SupLinUCB-type algorithm that enjoys computational efficiency and a variance-aware regret bound $tilde Obig(dsqrtsum_t=1Tsigma_t2 + dbig)$.
Our regret bound naturally aligns with the intuitive expectation in scenarios where the comparison is deterministic, the algorithm only suffers from an $tilde O(d)$ regret.
arXiv Detail & Related papers (2023-10-02T08:15:52Z) - Settling the Sample Complexity of Online Reinforcement Learning [92.02082223856479]
We show how to achieve minimax-optimal regret without incurring any burn-in cost.<n>We extend our theory to unveil the influences of problem-dependent quantities like the optimal value/cost and certain variances.
arXiv Detail & Related papers (2023-07-25T15:42:11Z) - Combinatorial Bandits for Maximum Value Reward Function under Max
Value-Index Feedback [9.771002043127728]
We consider a multi-armed bandit problem for maximum value reward function under maximum value and index feedback.
We propose an algorithm and provide a regret bound for problem instances with arm outcomes according to arbitrary distributions with finite supports.
Our algorithm achieves a $O((k/Delta)log(T))$ distribution-dependent and a $tildeO(sqrtT)$ distribution-independent regret.
arXiv Detail & Related papers (2023-05-25T14:02:12Z) - Contextual Combinatorial Bandits with Probabilistically Triggered Arms [55.9237004478033]
We study contextual bandits with probabilistically triggered arms (C$2$MAB-T) under a variety of smoothness conditions.
Under the triggering modulated (TPM) condition, we devise the C$2$-UC-T algorithm and derive a regret bound $tildeO(dsqrtT)$.
arXiv Detail & Related papers (2023-03-30T02:51:00Z) - Adversarially Robust Multi-Armed Bandit Algorithm with
Variance-Dependent Regret Bounds [34.37963000493442]
This paper considers the multi-armed bandit (MAB) problem and provides a new best-of-both-worlds (BOBW) algorithm that works nearly optimally in both adversarial settings.
arXiv Detail & Related papers (2022-06-14T12:58:46Z) - Problem Dependent View on Structured Thresholding Bandit Problems [73.70176003598449]
We investigate the problem dependent regime in the Thresholding Bandit problem (TBP)
The objective of the learner is to output, at the end of a sequential game, the set of arms whose means are above a given threshold.
We provide upper and lower bounds for the probability of error in both the concave and monotone settings.
arXiv Detail & Related papers (2021-06-18T15:01:01Z) - Combinatorial Bandits without Total Order for Arms [52.93972547896022]
We present a reward model that captures set-dependent reward distribution and assumes no total order for arms.
We develop a novel regret analysis and show an $Oleft(frack2 n log Tepsilonright)$ gap-dependent regret bound as well as an $Oleft(k2sqrtn T log Tright)$ gap-independent regret bound.
arXiv Detail & Related papers (2021-03-03T23:08:59Z) - Near-Optimal Regret Bounds for Contextual Combinatorial Semi-Bandits
with Linear Payoff Functions [53.77572276969548]
We show that the C$2$UCB algorithm has the optimal regret bound $tildeO(dsqrtkT + dk)$ for the partition matroid constraints.
For general constraints, we propose an algorithm that modifies the reward estimates of arms in the C$2$UCB algorithm.
arXiv Detail & Related papers (2021-01-20T04:29:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.