論文の概要: Multimodal Cancer Survival Analysis via Hypergraph Learning with Cross-Modality Rebalance
- arxiv url: http://arxiv.org/abs/2505.11997v2
- Date: Tue, 20 May 2025 11:04:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 12:33:37.413308
- Title: Multimodal Cancer Survival Analysis via Hypergraph Learning with Cross-Modality Rebalance
- Title(参考訳): ハイパーグラフ学習によるマルチモーダル癌生存解析
- Authors: Mingcheng Qu, Guang Yang, Donglin Di, Tonghua Su, Yue Gao, Yang Song, Lei Fan,
- Abstract要約: 本稿では,ハイパーグラフ学習を取り入れた病理画像から文脈的・階層的詳細を抽出するフレームワークを提案する。
C-Indexの性能は3.4%以上向上した。
- 参考スコア(独自算出の注目度): 14.966126636473952
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multimodal pathology-genomic analysis has become increasingly prominent in cancer survival prediction. However, existing studies mainly utilize multi-instance learning to aggregate patch-level features, neglecting the information loss of contextual and hierarchical details within pathology images. Furthermore, the disparity in data granularity and dimensionality between pathology and genomics leads to a significant modality imbalance. The high spatial resolution inherent in pathology data renders it a dominant role while overshadowing genomics in multimodal integration. In this paper, we propose a multimodal survival prediction framework that incorporates hypergraph learning to effectively capture both contextual and hierarchical details from pathology images. Moreover, it employs a modality rebalance mechanism and an interactive alignment fusion strategy to dynamically reweight the contributions of the two modalities, thereby mitigating the pathology-genomics imbalance. Quantitative and qualitative experiments are conducted on five TCGA datasets, demonstrating that our model outperforms advanced methods by over 3.4\% in C-Index performance.
- Abstract(参考訳): 癌生存予測では, マルチモーダルな病理・ゲノム解析が注目されている。
しかし,既存の研究では,主にマルチインスタンス学習を用いてパッチレベルの特徴を集約し,病理画像内の文脈的・階層的詳細情報の喪失を無視している。
さらに、データ粒度の相違と、病理学とゲノム学の次元性は、大きなモダリティの不均衡をもたらす。
病理データに固有の高解像度の空間分解能は、マルチモーダル統合におけるゲノミクスのオーバーシェーディングにおいて、その役割を担っている。
本稿では,ハイパーグラフ学習を取り入れたマルチモーダルサバイバル予測フレームワークを提案する。
さらに、2つのモダリティの寄与を動的に再加重するために、モダリティ・リバランス機構とインタラクティブアライメント・フュージョン・ストラテジーを採用し、それによって病理・ゲノムの不均衡を緩和する。
5つのTCGAデータセットを用いて定量的および定性的な実験を行い、我々のモデルはC-Indexのパフォーマンスにおいて3.4\%以上の高度な手法より優れていることを示した。
関連論文リスト
- Any-to-Any Learning in Computational Pathology via Triplet Multimodal Pretraining [7.22968366818898]
ALTERは、WSI、ゲノム学、病理学のレポートを統合した、トリモーダルな事前トレーニングフレームワークである。
WSI中心のアプローチを超えて、堅牢でクロスプラットフォームな表現を学びます。
ALTERは生存予測,癌サブタイプ,遺伝子変異予測,報告生成など,幅広い臨床課題にまたがって評価を行った。
論文 参考訳(メタデータ) (2025-05-19T05:07:34Z) - MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention [52.106879463828044]
病理組織学と転写学は、腫瘍学の基本的なモダリティであり、疾患の形態学的および分子的側面を包含している。
モーダルアライメントと保持を両立させる新しいマルチモーダル表現学習法であるMIRRORを提案する。
がんの亜型化と生存分析のためのTCGAコホートに関する広範囲な評価は,MIRRORの優れた性能を浮き彫りにしている。
論文 参考訳(メタデータ) (2025-03-01T07:02:30Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
がん予後は、患者の予後と生存率を予測する重要なタスクである。
これまでの研究では、臨床ノート、医療画像、ゲノムデータなどの多様なデータモダリティを統合し、補完的な情報を活用している。
既存のアプローチには2つの大きな制限がある。まず、各病院の患者記録など、各種のトレーニングに新しく到着したデータを組み込むことに苦慮する。
第二に、ほとんどのマルチモーダル統合手法は単純化された結合やタスク固有のパイプラインに依存しており、モダリティ間の複雑な相互依存を捉えることができない。
論文 参考訳(メタデータ) (2025-01-30T06:49:57Z) - Multimodal Cross-Task Interaction for Survival Analysis in Whole Slide Pathological Images [10.996711454572331]
病理像とゲノムプロファイルを利用した生存予測は、癌解析と予後においてますます重要である。
既存のマルチモーダル手法は、補完的な情報を統合するためのアライメント戦略に依存していることが多い。
本稿では,サブタイプ分類と生存分析タスクの因果関係を明らかにするために,MCTI(Multimodal Cross-Task Interaction)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-25T02:18:35Z) - Path-GPTOmic: A Balanced Multi-modal Learning Framework for Survival Outcome Prediction [14.204637932937082]
本稿では,癌生存率予測のためのマルチモーダルパスGPTOmicフレームワークを提案する。
基礎モデルである scGPT の埋め込み空間は,最初は単一セルRNA-seq で訓練された。
生存予測のためのCox部分的可能性損失に対応する勾配変調機構を提案する。
論文 参考訳(メタデータ) (2024-03-18T00:02:48Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
本稿では,フレキシブルなマルチモーダル融合アーキテクチャであるHybrid Early-fusion Attention Learning Network (HEALNet)を提案する。
The Cancer Genome Atlas (TCGA) の4つのがんデータセットにおける全スライド画像と多モードデータを用いたマルチモーダルサバイバル解析を行った。
HEALNetは、他のエンドツーエンドの訓練された融合モデルと比較して最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-15T17:06:26Z) - Analyzing the Effects of Handling Data Imbalance on Learned Features
from Medical Images by Looking Into the Models [50.537859423741644]
不均衡なデータセットでモデルをトレーニングすることは、学習問題にユニークな課題をもたらす可能性がある。
ニューラルネットワークの内部ユニットを深く調べて、データの不均衡処理が学習した機能にどのように影響するかを観察します。
論文 参考訳(メタデータ) (2022-04-04T09:38:38Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。