Incentivize Contribution and Learn Parameters Too: Federated Learning with Strategic Data Owners
- URL: http://arxiv.org/abs/2505.12010v2
- Date: Thu, 19 Jun 2025 14:06:03 GMT
- Title: Incentivize Contribution and Learn Parameters Too: Federated Learning with Strategic Data Owners
- Authors: Drashthi Doshi, Aditya Vema Reddy Kesari, Swaprava Nath, Avishek Ghosh, Suhas S Kowshik,
- Abstract summary: This paper addresses the question of rationality of contribution, which distinguishes it from the extant literature.<n>We propose a second mechanism with monetary transfers that is budget balanced and enables the full data contribution along with optimal parameter learning.<n>Large scale experiments with real (federated) datasets (CIFAR-10, FeMNIST, and Twitter) show that these algorithms converge quite fast in practice, yield good welfare guarantees, and better model performance for all agents.
- Score: 9.233276342400485
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Classical federated learning (FL) assumes that the clients have a limited amount of noisy data with which they voluntarily participate and contribute towards learning a global, more accurate model in a principled manner. The learning happens in a distributed fashion without sharing the data with the center. However, these methods do not consider the incentive of an agent for participating and contributing to the process, given that data collection and running a distributed algorithm is costly for the clients. The question of rationality of contribution has been asked recently in the literature and some results exist that consider this problem. This paper addresses the question of simultaneous parameter learning and incentivizing contribution, which distinguishes it from the extant literature. Our first mechanism incentivizes each client to contribute to the FL process at a Nash equilibrium and simultaneously learn the model parameters. However, this equilibrium outcome can be away from the optimal, where clients contribute with their full data and the algorithm learns the optimal parameters. We propose a second mechanism with monetary transfers that is budget balanced and enables the full data contribution along with optimal parameter learning. Large scale experiments with real (federated) datasets (CIFAR-10, FeMNIST, and Twitter) show that these algorithms converge quite fast in practice, yield good welfare guarantees, and better model performance for all agents.
Related papers
- FedReMa: Improving Personalized Federated Learning via Leveraging the Most Relevant Clients [13.98392319567057]
Federated Learning (FL) is a distributed machine learning paradigm that achieves a globally robust model through decentralized computation and periodic model synthesis.
Despite their wide adoption, existing FL and PFL works have yet to comprehensively address the class-imbalance issue.
We propose FedReMa, an efficient PFL algorithm that can tackle class-imbalance by utilizing an adaptive inter-client co-learning approach.
arXiv Detail & Related papers (2024-11-04T05:44:28Z) - ConDa: Fast Federated Unlearning with Contribution Dampening [46.074452659791575]
ConDa is a framework that performs efficient unlearning by tracking down the parameters which affect the global model for each client.
We perform experiments on multiple datasets and demonstrate that ConDa is effective to forget a client's data.
arXiv Detail & Related papers (2024-10-05T12:45:35Z) - A Resource-Adaptive Approach for Federated Learning under Resource-Constrained Environments [22.038826059430242]
The paper studies a fundamental federated learning (FL) problem involving multiple clients with heterogeneous constrained resources.
We propose Fed-RAA: a Resource-Adaptive Asynchronous Federated learning algorithm.
arXiv Detail & Related papers (2024-06-19T08:55:40Z) - IMFL-AIGC: Incentive Mechanism Design for Federated Learning Empowered by Artificial Intelligence Generated Content [15.620004060097155]
Federated learning (FL) has emerged as a promising paradigm that enables clients to collaboratively train a shared global model without uploading their local data.
We propose a data quality-aware incentive mechanism to encourage clients' participation.
Our proposed mechanism exhibits highest training accuracy and reduces up to 53.34% of the server's cost with real-world datasets.
arXiv Detail & Related papers (2024-06-12T07:47:22Z) - Federated Learning Can Find Friends That Are Advantageous [14.993730469216546]
In Federated Learning (FL), the distributed nature and heterogeneity of client data present both opportunities and challenges.
We introduce a novel algorithm that assigns adaptive aggregation weights to clients participating in FL training, identifying those with data distributions most conducive to a specific learning objective.
arXiv Detail & Related papers (2024-02-07T17:46:37Z) - Learn What You Need in Personalized Federated Learning [53.83081622573734]
$textitLearn2pFed$ is a novel algorithm-unrolling-based personalized federated learning framework.
We show that $textitLearn2pFed$ significantly outperforms previous personalized federated learning methods.
arXiv Detail & Related papers (2024-01-16T12:45:15Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - Mechanisms that Incentivize Data Sharing in Federated Learning [90.74337749137432]
We show how a naive scheme leads to catastrophic levels of free-riding where the benefits of data sharing are completely eroded.
We then introduce accuracy shaping based mechanisms to maximize the amount of data generated by each agent.
arXiv Detail & Related papers (2022-07-10T22:36:52Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.