論文の概要: Personalized Author Obfuscation with Large Language Models
- arxiv url: http://arxiv.org/abs/2505.12090v1
- Date: Sat, 17 May 2025 17:10:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.031014
- Title: Personalized Author Obfuscation with Large Language Models
- Title(参考訳): 大規模言語モデルを用いたパーソナライズされた著者難読化
- Authors: Mohammad Shokri, Sarah Ita Levitan, Rivka Levitan,
- Abstract要約: 著者の難読化における大規模言語モデル(LLM)の有効性について,パラフレーズ化と書き方の変更による検討を行った。
有効性のバイモーダル分布を観察し、ユーザ間で性能が著しく異なる。
そこで本研究では,標準的なプロンプト技術よりも優れたパーソナライズされたプロンプト手法を提案する。
- 参考スコア(独自算出の注目度): 9.304412297687037
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we investigate the efficacy of large language models (LLMs) in obfuscating authorship by paraphrasing and altering writing styles. Rather than adopting a holistic approach that evaluates performance across the entire dataset, we focus on user-wise performance to analyze how obfuscation effectiveness varies across individual authors. While LLMs are generally effective, we observe a bimodal distribution of efficacy, with performance varying significantly across users. To address this, we propose a personalized prompting method that outperforms standard prompting techniques and partially mitigates the bimodality issue.
- Abstract(参考訳): 本稿では,大規模言語モデル (LLM) のパラフレーズ化と書き方の変更による難読化における有効性について検討する。
データセット全体のパフォーマンスを評価する全体論的アプローチを採用するのではなく、ユーザ側のパフォーマンスに注目して、個々の著者間で難読化の有効性がどのように変化するかを分析します。
LLMは一般的に有効であるが,効果のバイモーダル分布はユーザによって大きく異なる。
そこで本研究では,標準的なプロンプト技術を上回るパーソナライズされたプロンプト手法を提案し,バイモーダリティ問題を部分的に緩和する。
関連論文リスト
- Ensemble Bayesian Inference: Leveraging Small Language Models to Achieve LLM-level Accuracy in Profile Matching Tasks [0.0]
本研究では,プロプライエタリな大規模言語モデル (LLM) に匹敵する精度を実現するため,小型言語モデル (SLM) アンサンブルの可能性を検討する。
本稿では,複数のSLMから判断を合成するためにベイズ推定を適用した新しい手法として,EBI(Ensemble Bayesian Inference)を提案する。
論文 参考訳(メタデータ) (2025-04-24T15:55:10Z) - Improve LLM-based Automatic Essay Scoring with Linguistic Features [46.41475844992872]
本稿では,多様なプロンプトにまたがってエッセイを処理できるスコアリングシステムを開発した。
既存のメソッドは通常、2つのカテゴリに分類される: 教師付き特徴ベースのアプローチと、大きな言語モデル(LLM)ベースの方法。
論文 参考訳(メタデータ) (2025-02-13T17:09:52Z) - Enhancing Semantic Consistency of Large Language Models through Model Editing: An Interpretability-Oriented Approach [28.07366458452159]
大規模言語モデル(LLM)は、等価な意味を持つプロンプトが提示されるが、元のプロンプトとは異なる形で表現されるとき、矛盾する出力を生成する。
LLMのセマンティック一貫性を達成するために、重要なアプローチの1つは、セマンティックに等価な意味を持つプロンプトとアウトプットのペアでモデルを微調整することである。
LLMのセマンティック一貫性を高めるために,より解釈可能な手法(モデル編集)を提案する。
論文 参考訳(メタデータ) (2025-01-19T13:26:15Z) - Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback [50.84142264245052]
テキストレス音声言語モデル(SLM)のセマンティック理解を強化するためのAlign-SLMフレームワークを導入する。
提案手法は、与えられたプロンプトから複数の音声継続を生成し、意味的指標を用いて、直接選好最適化(DPO)のための選好データを生成する。
語彙および構文モデリングのためのZeroSpeech 2021ベンチマーク、意味的コヒーレンスのためのStoryClozeデータセットの音声バージョン、GPT4-oスコアや人間評価などの音声生成指標を用いて、フレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-11-04T06:07:53Z) - Scalable Influence and Fact Tracing for Large Language Model Pretraining [14.598556308631018]
トレーニングデータ属性(TDA)メソッドは、特定のトレーニング例にモデル出力を振り返ることを目的としている。
我々は,既存の勾配法を改良し,大規模に効果的に機能させる。
我々は、インプロンプトセットとモデルアウトプットをWebベースの可視化ツールとともにリリースし、影響力のある例を探索します。
論文 参考訳(メタデータ) (2024-10-22T20:39:21Z) - MetaAlign: Align Large Language Models with Diverse Preferences during Inference Time [50.41806216615488]
大規模言語モデル(LLM)は、広範なテキストコーパスから広範な知識と顕著な能力を取得する。
LLMをより使いやすくするためには、それらを人間の好みに合わせることが不可欠である。
提案手法は,LLMが推論時に指定される様々な明示的あるいは暗黙的な選好と動的に整合するのを支援することを目的としている。
論文 参考訳(メタデータ) (2024-10-18T05:31:13Z) - Large Language Models to Enhance Bayesian Optimization [57.474613739645605]
本稿では,大規模言語モデル(LLM)の能力をベイズ最適化に組み込む新しいアプローチであるLLAMBOを提案する。
高いレベルでは、自然言語のBO問題を枠組み化し、LLMが歴史的評価に照らした有望な解を反復的に提案し、評価することを可能にする。
以上の結果から,LLAMBOはゼロショットウォームスタートに有効であり,サロゲートモデリングや候補サンプリングの促進,特に観察が不十分な場合の探索の初期段階において有効であることが示唆された。
論文 参考訳(メタデータ) (2024-02-06T11:44:06Z) - Iterative Mask Filling: An Effective Text Augmentation Method Using
Masked Language Modeling [0.0]
本稿では,変換器を用いたBERTモデルのフィル・マスク機能を利用した新しいテキスト拡張手法を提案する。
本手法では,文中の単語を反復的にマスキングし,言語モデル予測に置き換える。
実験の結果,提案手法は,特にトピック分類データセットにおいて,性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2024-01-03T16:47:13Z) - Robust Prompt Optimization for Large Language Models Against
Distribution Shifts [80.6757997074956]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて重要な能力を示している。
本稿では,LLMの分散シフトに対するロバストな最適化法を提案する。
この問題は、ラベル付けされたソースグループに最適化されたプロンプトを同時にラベル付けされていないターゲットグループに一般化する必要がある。
論文 参考訳(メタデータ) (2023-05-23T11:30:43Z) - Examination and Extension of Strategies for Improving Personalized
Language Modeling via Interpolation [59.35932511895986]
我々は,グローバルLSTMベースのオーサリングモデルをユーザ個人化n-gramモデルで補間することにより,ユーザレベルでのオフラインメトリクスの改善を示す。
利用者の80%以上がパープレキシティのリフトを受けており、ユーザー当たり平均5.2%がパープレキシティのリフトを受け取っている。
論文 参考訳(メタデータ) (2020-06-09T19:29:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。