FABLE: A Localized, Targeted Adversarial Attack on Weather Forecasting Models
- URL: http://arxiv.org/abs/2505.12167v1
- Date: Sat, 17 May 2025 22:51:52 GMT
- Title: FABLE: A Localized, Targeted Adversarial Attack on Weather Forecasting Models
- Authors: Yue Deng, Asadullah Hill Galib, Xin Lan, Pang-Ning Tan, Lifeng Luo,
- Abstract summary: Deep learning-based weather forecasting models have recently demonstrated significant performance improvements over gold-standard physics-based simulation tools.<n>These models are vulnerable to adversarial attacks, which raises concerns about their trustworthiness.<n>We propose a novel framework called FABLE, which employs a 3D discrete wavelet decomposition to extract the varying components of the geospatio-temporal data.
- Score: 15.489712213550614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based weather forecasting models have recently demonstrated significant performance improvements over gold-standard physics-based simulation tools. However, these models are vulnerable to adversarial attacks, which raises concerns about their trustworthiness. In this paper, we first investigate the feasibility of applying existing adversarial attack methods to weather forecasting models. We argue that a successful attack should (1) not modify significantly its original inputs, (2) be faithful, i.e., achieve the desired forecast at targeted locations with minimal changes to non-targeted locations, and (3) be geospatio-temporally realistic. However, balancing these criteria is a challenge as existing methods are not designed to preserve the geospatio-temporal dependencies of the original samples. To address this challenge, we propose a novel framework called FABLE (Forecast Alteration By Localized targeted advErsarial attack), which employs a 3D discrete wavelet decomposition to extract the varying components of the geospatio-temporal data. By regulating the magnitude of adversarial perturbations across different components, FABLE can generate adversarial inputs that maintain geospatio-temporal coherence while remaining faithful and closely aligned with the original inputs. Experimental results on multiple real-world datasets demonstrate the effectiveness of our framework over baseline methods across various metrics.
Related papers
- Exploiting Edge Features for Transferable Adversarial Attacks in Distributed Machine Learning [54.26807397329468]
This work explores a previously overlooked vulnerability in distributed deep learning systems.<n>An adversary who intercepts the intermediate features transmitted between them can still pose a serious threat.<n>We propose an exploitation strategy specifically designed for distributed settings.
arXiv Detail & Related papers (2025-07-09T20:09:00Z) - Improving Adversarial Robustness for 3D Point Cloud Recognition at Test-Time through Purified Self-Training [9.072521170921712]
3D point cloud deep learning model is vulnerable to adversarial attacks.
adversarial purification employs generative model to mitigate the impact of adversarial attacks.
We propose a test-time purified self-training strategy to achieve this objective.
arXiv Detail & Related papers (2024-09-23T11:46:38Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - Exploring the Physical World Adversarial Robustness of Vehicle Detection [13.588120545886229]
Adrial attacks can compromise the robustness of real-world detection models.
We propose an innovative instant-level data generation pipeline using the CARLA simulator.
Our findings highlight diverse model performances under adversarial conditions.
arXiv Detail & Related papers (2023-08-07T11:09:12Z) - LEAT: Towards Robust Deepfake Disruption in Real-World Scenarios via
Latent Ensemble Attack [11.764601181046496]
Deepfakes, malicious visual contents created by generative models, pose an increasingly harmful threat to society.
To proactively mitigate deepfake damages, recent studies have employed adversarial perturbation to disrupt deepfake model outputs.
We propose a simple yet effective disruption method called Latent Ensemble ATtack (LEAT), which attacks the independent latent encoding process.
arXiv Detail & Related papers (2023-07-04T07:00:37Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Ada3Diff: Defending against 3D Adversarial Point Clouds via Adaptive
Diffusion [70.60038549155485]
Deep 3D point cloud models are sensitive to adversarial attacks, which poses threats to safety-critical applications such as autonomous driving.
This paper introduces a novel distortion-aware defense framework that can rebuild the pristine data distribution with a tailored intensity estimator and a diffusion model.
arXiv Detail & Related papers (2022-11-29T14:32:43Z) - Practical Adversarial Attacks on Spatiotemporal Traffic Forecasting
Models [9.885060319609831]
Existing methods assume a reliable and unbiased forecasting environment, which is not always available in the wild.
We propose a practical adversarial attack framework, instead of simultaneously attacking all data sources.
We theoretically demonstrate the worst performance bound of adversarial traffic forecasting attacks.
arXiv Detail & Related papers (2022-10-05T02:25:10Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
We demonstrate that the state-of-the-art gait recognition model is vulnerable to such attacks.
We employ a generative adversarial network based architecture to semantically generate adversarial high-quality gait silhouettes or video frames.
The experimental results show that if only one-fortieth of the frames are attacked, the accuracy of the target model drops dramatically.
arXiv Detail & Related papers (2020-02-22T10:08:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.