Vectors from Larger Language Models Predict Human Reading Time and fMRI Data More Poorly when Dimensionality Expansion is Controlled
- URL: http://arxiv.org/abs/2505.12196v1
- Date: Sun, 18 May 2025 02:13:48 GMT
- Title: Vectors from Larger Language Models Predict Human Reading Time and fMRI Data More Poorly when Dimensionality Expansion is Controlled
- Authors: Yi-Chien Lin, Hongao Zhu, William Schuler,
- Abstract summary: The impressive linguistic abilities of large language models (LLMs) have recommended them as models of human sentence processing.<n>Recent studies have shown this scaling inverts after a point, as LMs become excessively large and accurate, when word prediction probability is used as a predictor.<n>This study evaluates LLM scaling using entire LLM vectors, while controlling for the larger number of predictors in vectors from larger LLMs.
- Score: 8.414116316164888
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The impressive linguistic abilities of large language models (LLMs) have recommended them as models of human sentence processing, with some conjecturing a positive 'quality-power' relationship (Wilcox et al., 2023), in which language models' (LMs') fit to psychometric data continues to improve as their ability to predict words in context increases. This is important because it suggests that elements of LLM architecture, such as veridical attention to context and a unique objective of predicting upcoming words, reflect the architecture of the human sentence processing faculty, and that any inadequacies in predicting human reading time and brain imaging data may be attributed to insufficient model complexity, which recedes as larger models become available. Recent studies (Oh and Schuler, 2023) have shown this scaling inverts after a point, as LMs become excessively large and accurate, when word prediction probability (as information-theoretic surprisal) is used as a predictor. Other studies propose the use of entire vectors from differently sized LLMs, still showing positive scaling (Schrimpf et al., 2021), casting doubt on the value of surprisal as a predictor, but do not control for the larger number of predictors in vectors from larger LMs. This study evaluates LLM scaling using entire LLM vectors, while controlling for the larger number of predictors in vectors from larger LLMs. Results show that inverse scaling obtains, suggesting that inadequacies in predicting human reading time and brain imaging data may be due to substantial misalignment between LLMs and human sentence processing, which worsens as larger models are used.
Related papers
- Latent Thought Models with Variational Bayes Inference-Time Computation [52.63299874322121]
Latent Thought Models (LTMs) incorporate explicit latent thought vectors that follow an explicit prior model in latent space.<n>LTMs demonstrate superior sample and parameter efficiency compared to autoregressive models and discrete diffusion models.
arXiv Detail & Related papers (2025-02-03T17:50:34Z) - Bayesian Statistical Modeling with Predictors from LLMs [5.5711773076846365]
State of the art large language models (LLMs) have shown impressive performance on a variety of benchmark tasks.
This raises questions about the human-likeness of LLM-derived information.
arXiv Detail & Related papers (2024-06-13T11:33:30Z) - Psychometric Predictive Power of Large Language Models [32.31556074470733]
We find that instruction tuning does not always make large language models human-like from a cognitive modeling perspective.
Next-word probabilities estimated by instruction-tuned LLMs are often worse at simulating human reading behavior than those estimated by base LLMs.
arXiv Detail & Related papers (2023-11-13T17:19:14Z) - Large GPT-like Models are Bad Babies: A Closer Look at the Relationship
between Linguistic Competence and Psycholinguistic Measures [25.210837736795565]
We train a series of GPT-like language models of different sizes on the strict version of the BabyLM pretraining corpus.
We find a positive correlation between LM size and performance on all three challenge tasks, with different preferences for model width and depth in each of the tasks.
This suggests that modelling processing effort and linguistic competence may require an approach different from training GPT-like LMs on a developmentally plausible corpus.
arXiv Detail & Related papers (2023-11-08T09:26:27Z) - Probing Large Language Models from A Human Behavioral Perspective [24.109080140701188]
Large Language Models (LLMs) have emerged as dominant foundational models in modern NLP.
The understanding of their prediction processes and internal mechanisms, such as feed-forward networks (FFN) and multi-head self-attention (MHSA) remains largely unexplored.
arXiv Detail & Related papers (2023-10-08T16:16:21Z) - From Text to Source: Results in Detecting Large Language Model-Generated Content [17.306542392779445]
Large Language Models (LLMs) are celebrated for their ability to generate human-like text.
This paper investigates "Cross-Model Detection," by evaluating whether a classifier trained to distinguish between source LLM-generated and human-written text can also detect text from a target LLM without further training.
The research also explores Model Attribution, encompassing source model identification, model family, and model size classification, in addition to quantization and watermarking detection.
arXiv Detail & Related papers (2023-09-23T09:51:37Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z) - Why Does Surprisal From Larger Transformer-Based Language Models Provide
a Poorer Fit to Human Reading Times? [9.909170013118775]
The propensity of larger Transformer-based models to'memorize' sequences during training makes their surprisal estimates diverge from humanlike expectations.
These results suggest that the propensity of larger Transformer-based models to'memorize' sequences during training makes their surprisal estimates diverge from humanlike expectations.
arXiv Detail & Related papers (2022-12-23T03:57:54Z) - Better Language Model with Hypernym Class Prediction [101.8517004687825]
Class-based language models (LMs) have been long devised to address context sparsity in $n$-gram LMs.
In this study, we revisit this approach in the context of neural LMs.
arXiv Detail & Related papers (2022-03-21T01:16:44Z) - Multi-timescale Representation Learning in LSTM Language Models [69.98840820213937]
Language models must capture statistical dependencies between words at timescales ranging from very short to very long.
We derived a theory for how the memory gating mechanism in long short-term memory language models can capture power law decay.
Experiments showed that LSTM language models trained on natural English text learn to approximate this theoretical distribution.
arXiv Detail & Related papers (2020-09-27T02:13:38Z) - Future Vector Enhanced LSTM Language Model for LVCSR [67.03726018635174]
This paper proposes a novel enhanced long short-term memory (LSTM) LM using the future vector.
Experiments show that, the proposed new LSTM LM gets a better result on BLEU scores for long term sequence prediction.
Rescoring using both the new and conventional LSTM LMs can achieve a very large improvement on the word error rate.
arXiv Detail & Related papers (2020-07-31T08:38:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.