Bayesian Statistical Modeling with Predictors from LLMs
- URL: http://arxiv.org/abs/2406.09012v1
- Date: Thu, 13 Jun 2024 11:33:30 GMT
- Title: Bayesian Statistical Modeling with Predictors from LLMs
- Authors: Michael Franke, Polina Tsvilodub, Fausto Carcassi,
- Abstract summary: State of the art large language models (LLMs) have shown impressive performance on a variety of benchmark tasks.
This raises questions about the human-likeness of LLM-derived information.
- Score: 5.5711773076846365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State of the art large language models (LLMs) have shown impressive performance on a variety of benchmark tasks and are increasingly used as components in larger applications, where LLM-based predictions serve as proxies for human judgements or decision. This raises questions about the human-likeness of LLM-derived information, alignment with human intuition, and whether LLMs could possibly be considered (parts of) explanatory models of (aspects of) human cognition or language use. To shed more light on these issues, we here investigate the human-likeness of LLMs' predictions for multiple-choice decision tasks from the perspective of Bayesian statistical modeling. Using human data from a forced-choice experiment on pragmatic language use, we find that LLMs do not capture the variance in the human data at the item-level. We suggest different ways of deriving full distributional predictions from LLMs for aggregate, condition-level data, and find that some, but not all ways of obtaining condition-level predictions yield adequate fits to human data. These results suggests that assessment of LLM performance depends strongly on seemingly subtle choices in methodology, and that LLMs are at best predictors of human behavior at the aggregate, condition-level, for which they are, however, not designed to, or usually used to, make predictions in the first place.
Related papers
- Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
This work focuses on the pre-training loss as a more-efficient metric for performance estimation.
We extend the power law analytical function to predict domain-specific pre-training loss based on FLOPs across data sources.
We employ a two-layer neural network to model the non-linear relationship between multiple domain-specific loss and downstream performance.
arXiv Detail & Related papers (2024-10-11T04:57:48Z) - Predicting User Stances from Target-Agnostic Information using Large Language Models [6.9337465525334405]
Large Language Models' (LLMs) ability to predict a user's stance on a target given a collection of his/her target-agnostic social media posts is investigated.
arXiv Detail & Related papers (2024-09-22T11:21:16Z) - Performance Law of Large Language Models [58.32539851241063]
Performance law can be used to guide the choice of LLM architecture and the effective allocation of computational resources.
Performance law can be used to guide the choice of LLM architecture and the effective allocation of computational resources without extensive experiments.
arXiv Detail & Related papers (2024-08-19T11:09:12Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - A Survey on Human Preference Learning for Large Language Models [81.41868485811625]
The recent surge of versatile large language models (LLMs) largely depends on aligning increasingly capable foundation models with human intentions by preference learning.
This survey covers the sources and formats of preference feedback, the modeling and usage of preference signals, as well as the evaluation of the aligned LLMs.
arXiv Detail & Related papers (2024-06-17T03:52:51Z) - Can Language Models Use Forecasting Strategies? [14.332379032371612]
We describe experiments using a novel dataset of real world events and associated human predictions.
We find that models still struggle to make accurate predictions about the future.
arXiv Detail & Related papers (2024-06-06T19:01:42Z) - Language Models Trained to do Arithmetic Predict Human Risky and Intertemporal Choice [4.029252551781513]
We propose a novel way to enhance the utility of Large Language Models as cognitive models.
We show that an LLM pretrained on an ecologically valid arithmetic dataset, predicts human behavior better than many traditional cognitive models.
arXiv Detail & Related papers (2024-05-29T17:37:14Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Psychometric Predictive Power of Large Language Models [32.31556074470733]
We find that instruction tuning does not always make large language models human-like from a cognitive modeling perspective.
Next-word probabilities estimated by instruction-tuned LLMs are often worse at simulating human reading behavior than those estimated by base LLMs.
arXiv Detail & Related papers (2023-11-13T17:19:14Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.