論文の概要: Road Segmentation for ADAS/AD Applications
- arxiv url: http://arxiv.org/abs/2505.12206v1
- Date: Sun, 18 May 2025 02:43:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.093031
- Title: Road Segmentation for ADAS/AD Applications
- Title(参考訳): ADAS/AD応用のための道路セグメンテーション
- Authors: Mathanesh Vellingiri Ramasamy, Dimas Rizky Kurniasalim,
- Abstract要約: 我々は、Comma10kデータセット上の修正VGG-16と、KITTI Roadデータセット上の修正U-Netをトレーニングする。
どちらのモデルも精度が高く、VGG-16はU-Netよりも優れており、U-Netはよりエポックな訓練を受けた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate road segmentation is essential for autonomous driving and ADAS, enabling effective navigation in complex environments. This study examines how model architecture and dataset choice affect segmentation by training a modified VGG-16 on the Comma10k dataset and a modified U-Net on the KITTI Road dataset. Both models achieved high accuracy, with cross-dataset testing showing VGG-16 outperforming U-Net despite U-Net being trained for more epochs. We analyze model performance using metrics such as F1-score, mean intersection over union, and precision, discussing how architecture and dataset impact results.
- Abstract(参考訳): 道路の正確なセグメンテーションは、自動運転とADASにとって不可欠であり、複雑な環境で効果的なナビゲーションを可能にする。
本研究では,モデルアーキテクチャとデータセット選択が,Comma10kデータセットとKITTI Roadデータセットに修正VGG-16をトレーニングし,セグメント化にどのように影響するかを検討する。
どちらのモデルも精度が高く、VGG-16はU-Netよりも優れており、U-Netはよりエポックな訓練を受けた。
我々は、F1スコア、平均結合、精度といったメトリクスを用いてモデルパフォーマンスを分析し、アーキテクチャとデータセットが結果に与える影響について論じる。
関連論文リスト
- Data Scaling Laws for End-to-End Autonomous Driving [83.85463296830743]
16時間から8192時間に及ぶ内部駆動データセット上での簡易エンド・ツー・エンド駆動アーキテクチャの性能評価を行った。
具体的には、目標の性能向上を達成するために、どの程度のトレーニングデータが必要かを調査する。
論文 参考訳(メタデータ) (2025-04-06T03:23:48Z) - FUSED-Net: Detecting Traffic Signs with Limited Data [2.111102681327218]
本稿では,交通信号検出のための高速RCNN「FUSED-Net」を提案する。
従来のアプローチとは異なり、トレーニング中にすべてのパラメータを凍結しないようにし、限られたサンプルからFUSED-Netを学習できるようにします。
1ショット,3ショット,5ショット,10ショットのシナリオでそれぞれ2.4倍,2.2倍,1.5倍,1.3倍の改善を実現しています。
論文 参考訳(メタデータ) (2024-09-23T09:34:42Z) - Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient [52.2669490431145]
PropEnは'matching'にインスパイアされている。
一致したデータセットによるトレーニングは、データ分布内に留まりながら、興味のある性質の勾配を近似することを示す。
論文 参考訳(メタデータ) (2024-05-28T11:30:19Z) - RanLayNet: A Dataset for Document Layout Detection used for Domain Adaptation and Generalization [36.973388673687815]
RanLayNetは、自動的に割り当てられたラベルでリッチ化された合成ドキュメントデータセットである。
本研究では,データセットでトレーニングしたディープレイアウト識別モデルに対して,実際の文書のみをトレーニングしたモデルと比較して,性能が向上したことを示す。
論文 参考訳(メタデータ) (2024-04-15T07:50:15Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - RAIS: Robust and Accurate Interactive Segmentation via Continual
Learning [16.382862088005087]
本稿では,対話型セグメンテーションと継続的学習のための堅牢で正確なアーキテクチャであるRAISを提案する。
テストセットを効率的に学習するために,グローバルパラメータとローカルパラメータを更新するための新しい最適化手法を提案する。
また,リモートセンシングと医用画像のデータセットにおけるロバスト性も示す。
論文 参考訳(メタデータ) (2022-10-20T03:05:44Z) - Detection Hub: Unifying Object Detection Datasets via Query Adaptation
on Language Embedding [137.3719377780593]
新しいデザイン(De Detection Hubという名前)は、データセット認識とカテゴリ整列である。
データセットの不整合を緩和し、検出器が複数のデータセットをまたいで学習するための一貫性のあるガイダンスを提供する。
データセット間のカテゴリは、ワンホットなカテゴリ表現を単語埋め込みに置き換えることで、意味的に統一された空間に整列される。
論文 参考訳(メタデータ) (2022-06-07T17:59:44Z) - MSeg: A Composite Dataset for Multi-domain Semantic Segmentation [100.17755160696939]
セマンティックセグメンテーションデータセットを異なるドメインから統合する合成データセットであるMSegを提案する。
一般化と画素レベルのアノテーションのアライメントを調整し,2万枚以上のオブジェクトマスクを8万枚以上の画像で再現する。
MSegでトレーニングされたモデルは、WildDash-v1のリーダーボードで、トレーニング中にWildDashのデータに触れることなく、堅牢なセマンティックセグメンテーションのためにランク付けされている。
論文 参考訳(メタデータ) (2021-12-27T16:16:35Z) - Learning to Generate Content-Aware Dynamic Detectors [62.74209921174237]
サンプル適応型モデルアーキテクチャを自動的に生成する効率的な検出器の設計を新たに導入する。
動的ルーティングの学習を導くために、オブジェクト検出に適したコースツーファインの成層図を紹介します。
MS-COCOデータセットの実験により、CADDetはバニラルーティングに比べて10%少ないFLOPで1.8以上のmAPを達成することが示された。
論文 参考訳(メタデータ) (2020-12-08T08:05:20Z) - Exploration of Optimized Semantic Segmentation Architectures for
edge-Deployment on Drones [5.349223987137843]
本稿では,UAVデータ処理におけるセマンティックセグメンテーションアーキテクチャにおけるネットワークパラメータの影響について分析する。
我々は,FPN-EfficientNetB3 の最適ネットワークアーキテクチャを Imagenet に基づいて事前学習したバックボーンエンコーダで同定する。
Model: FPNとBackbone: InResnetV2と比較して、メモリの4.1倍の節約と10%のレイテンシ改善を実現しています。
論文 参考訳(メタデータ) (2020-07-06T15:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。