Data Whisperer: Efficient Data Selection for Task-Specific LLM Fine-Tuning via Few-Shot In-Context Learning
- URL: http://arxiv.org/abs/2505.12212v3
- Date: Sun, 01 Jun 2025 05:57:00 GMT
- Title: Data Whisperer: Efficient Data Selection for Task-Specific LLM Fine-Tuning via Few-Shot In-Context Learning
- Authors: Shaobo Wang, Xiangqi Jin, Ziming Wang, Jize Wang, Jiajun Zhang, Kaixin Li, Zichen Wen, Zhong Li, Conghui He, Xuming Hu, Linfeng Zhang,
- Abstract summary: Fine-tuning large language models (LLMs) on task-specific data is essential for their effective deployment.<n>We propose Data Whisperer, an efficient, training-free, attention-based method that leverages few-shot in-context learning with the model to be fine-tuned.<n>Data Whisperer achieves superior performance compared to the full GSM8K dataset on the Llama-3-8B-Instruct model, using just 10% of the data, and outperforms existing methods with a 3.1-point improvement and a 7.4$times$ speedup.
- Score: 40.19639581728674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fine-tuning large language models (LLMs) on task-specific data is essential for their effective deployment. As dataset sizes grow, efficiently selecting optimal subsets for training becomes crucial to balancing performance and computational costs. Traditional data selection methods often require fine-tuning a scoring model on the target dataset, which is time-consuming and resource-intensive, or rely on heuristics that fail to fully leverage the model's predictive capabilities. To address these challenges, we propose Data Whisperer, an efficient, training-free, attention-based method that leverages few-shot in-context learning with the model to be fine-tuned. Comprehensive evaluations were conducted on both raw and synthetic datasets across diverse tasks and models. Notably, Data Whisperer achieves superior performance compared to the full GSM8K dataset on the Llama-3-8B-Instruct model, using just 10% of the data, and outperforms existing methods with a 3.1-point improvement and a 7.4$\times$ speedup. The code is available at https://github.com/gszfwsb/Data-Whisperer.
Related papers
- SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
Large language models (LLMs) have shown strong reasoning capabilities when fine-tuned with reinforcement learning (RL)<n>We propose textbfSPaRFT, a self-paced learning framework that enables efficient learning based on the capability of the model being trained.
arXiv Detail & Related papers (2025-08-07T03:50:48Z) - Data Efficacy for Language Model Training [29.901090317084005]
Data is fundamental to the training of language models (LM)<n>Recent research has been dedicated to data efficiency, which aims to maximize performance by selecting a minimal or optimal subset of training data.<n>This work introduces a general paradigm, DELT, for considering data efficacy in LM training.
arXiv Detail & Related papers (2025-06-26T17:59:07Z) - Data-efficient LLM Fine-tuning for Code Generation [30.441431693349866]
Large language models (LLMs) have demonstrated significant potential in code generation tasks.<n>Existing approaches typically generate large amounts of synthetic data for fine-tuning.<n>We propose a data selection strategy in order to improve the effectiveness and efficiency of training for code-based LLMs.
arXiv Detail & Related papers (2025-04-17T06:29:28Z) - MASS: Mathematical Data Selection via Skill Graphs for Pretraining Large Language Models [44.458342094004024]
High-quality data plays a critical role in the pretraining and fine-tuning of large language models (LLMs)<n>We introduce MASS, a textbfMAthematical data textbfSelection framework using the textbfSkill graph for pretraining LLMs.<n> Experimental results demonstrate the efficiency and effectiveness of MASS across different model sizes.
arXiv Detail & Related papers (2025-03-19T05:50:21Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
Standard practice is to filter for examples that match human notions of data quality.
We find that selecting according to similarity with "high quality" data sources may not increase (and can even hurt) performance compared to randomly selecting data.
Our framework avoids handpicked notions of data quality, and instead models explicitly how the learning process uses train datapoints to predict on the target tasks.
arXiv Detail & Related papers (2024-01-23T17:22:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.