OpenPros: A Large-Scale Dataset for Limited View Prostate Ultrasound Computed Tomography
- URL: http://arxiv.org/abs/2505.12261v1
- Date: Sun, 18 May 2025 06:56:49 GMT
- Title: OpenPros: A Large-Scale Dataset for Limited View Prostate Ultrasound Computed Tomography
- Authors: Hanchen Wang, Yixuan Wu, Yinan Feng, Peng Jin, Shihang Feng, Yiming Mao, James Wiskin, Baris Turkbey, Peter A. Pinto, Bradford J. Wood, Songting Luo, Yinpeng Chen, Emad Boctor, Youzuo Lin,
- Abstract summary: Prostate cancer is one of the most common and lethal cancers among men.<n>Traditional transrectal ultrasound methods suffer from low sensitivity, especially in detecting anteriorly located tumors.<n>OpenPros is the first large-scale benchmark dataset explicitly developed for limited-view prostate USCT.
- Score: 25.844490531325537
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prostate cancer is one of the most common and lethal cancers among men, making its early detection critically important. Although ultrasound imaging offers greater accessibility and cost-effectiveness compared to MRI, traditional transrectal ultrasound methods suffer from low sensitivity, especially in detecting anteriorly located tumors. Ultrasound computed tomography provides quantitative tissue characterization, but its clinical implementation faces significant challenges, particularly under anatomically constrained limited-angle acquisition conditions specific to prostate imaging. To address these unmet needs, we introduce OpenPros, the first large-scale benchmark dataset explicitly developed for limited-view prostate USCT. Our dataset includes over 280,000 paired samples of realistic 2D speed-of-sound (SOS) phantoms and corresponding ultrasound full-waveform data, generated from anatomically accurate 3D digital prostate models derived from real clinical MRI/CT scans and ex vivo ultrasound measurements, annotated by medical experts. Simulations are conducted under clinically realistic configurations using advanced finite-difference time-domain and Runge-Kutta acoustic wave solvers, both provided as open-source components. Through comprehensive baseline experiments, we demonstrate that state-of-the-art deep learning methods surpass traditional physics-based approaches in both inference efficiency and reconstruction accuracy. Nevertheless, current deep learning models still fall short of delivering clinically acceptable high-resolution images with sufficient accuracy. By publicly releasing OpenPros, we aim to encourage the development of advanced machine learning algorithms capable of bridging this performance gap and producing clinically usable, high-resolution, and highly accurate prostate ultrasound images. The dataset is publicly accessible at https://open-pros.github.io/.
Related papers
- UltraGauss: Ultrafast Gaussian Reconstruction of 3D Ultrasound Volumes [15.02330703285484]
2D-to-3D reconstructions are often computationally expensive, memory-intensive, or incompatible with ultrasound physics.<n>We introduce UltraGauss: the first ultrasound-specific Gaussian Splatting framework, extending view synthesis techniques to ultrasound wave propagation.<n>On real clinical ultrasound data, UltraGauss achieves state-of-the-art reconstructions in 5 minutes, and reaching 0.99 SSIM within 20 minutes on a single image.
arXiv Detail & Related papers (2025-05-08T20:53:47Z) - Ultrasound Lung Aeration Map via Physics-Aware Neural Operators [78.6077820217471]
Lung ultrasound is a growing modality in clinics for diagnosing acute and chronic lung diseases.<n>It is complicated by complex reverberations from the pleural interface caused by the inability of ultrasound to penetrate air.<n>We propose LUNA, an AI model that directly reconstructs lung aeration maps from RF data.
arXiv Detail & Related papers (2025-01-02T09:24:34Z) - Privacy-Preserving Federated Foundation Model for Generalist Ultrasound Artificial Intelligence [83.02106623401885]
We present UltraFedFM, an innovative privacy-preserving ultrasound foundation model.
UltraFedFM is collaboratively pre-trained using federated learning across 16 distributed medical institutions in 9 countries.
It achieves an average area under the receiver operating characteristic curve of 0.927 for disease diagnosis and a dice similarity coefficient of 0.878 for lesion segmentation.
arXiv Detail & Related papers (2024-11-25T13:40:11Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Domain Transfer Through Image-to-Image Translation for Uncertainty-Aware Prostate Cancer Classification [42.75911994044675]
We present a novel approach for unpaired image-to-image translation of prostate MRIs and an uncertainty-aware training approach for classifying clinically significant PCa.
Our approach involves a novel pipeline for translating unpaired 3.0T multi-parametric prostate MRIs to 1.5T, thereby augmenting the available training data.
Our experiments demonstrate that the proposed method significantly improves the Area Under ROC Curve (AUC) by over 20% compared to the previous work.
arXiv Detail & Related papers (2023-07-02T05:26:54Z) - Investigating Pulse-Echo Sound Speed Estimation in Breast Ultrasound
with Deep Learning [44.70495434283752]
We propose a deep-learning approach for sound speed estimation from in-phase and quadrature ultrasound signals.
We develop a large-scale simulated ultrasound dataset that generates quasi-realistic breast tissue.
We evaluate the model on simulated, phantom, and in-vivo breast ultrasound data.
arXiv Detail & Related papers (2023-02-06T19:02:44Z) - Adnexal Mass Segmentation with Ultrasound Data Synthesis [3.614586930645965]
Using supervised learning, we have demonstrated that segmentation of adnexal masses is possible.
We apply a novel pathology-specific data synthesiser to create synthetic medical images with their corresponding ground truth segmentations.
Our approach achieves the best performance across all classes, including an improvement of up to 8% when compared with nnU-Net baseline approaches.
arXiv Detail & Related papers (2022-09-25T19:24:02Z) - Towards Confident Detection of Prostate Cancer using High Resolution
Micro-ultrasound [7.826781688190151]
Detection of prostate cancer during transrectal ultrasound-guided biopsy is challenging.
Recent advancements in high-frequency ultrasound imaging - micro-ultrasound - have drastically increased the capability of tissue imaging at high resolution.
Our aim is to investigate the development of a robust deep learning model specifically for micro-ultrasound-guided prostate cancer biopsy.
arXiv Detail & Related papers (2022-07-21T14:00:00Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.