DEEM: Dynamic Experienced Expert Modeling for Stance Detection
- URL: http://arxiv.org/abs/2402.15264v3
- Date: Fri, 26 Apr 2024 01:06:31 GMT
- Title: DEEM: Dynamic Experienced Expert Modeling for Stance Detection
- Authors: Xiaolong Wang, Yile Wang, Sijie Cheng, Peng Li, Yang Liu,
- Abstract summary: We propose a Dynamic Experienced Expert Modeling (DEEM) method which can leverage the generated experts and let LLMs reason in a semi-parametric way.
Experimental results demonstrate that DEEM consistently achieves the best results on three standard benchmarks.
- Score: 22.826544082557316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has made a preliminary attempt to use large language models (LLMs) to solve the stance detection task, showing promising results. However, considering that stance detection usually requires detailed background knowledge, the vanilla reasoning method may neglect the domain knowledge to make a professional and accurate analysis. Thus, there is still room for improvement of LLMs reasoning, especially in leveraging the generation capability of LLMs to simulate specific experts (i.e., multi-agents) to detect the stance. In this paper, different from existing multi-agent works that require detailed descriptions and use fixed experts, we propose a Dynamic Experienced Expert Modeling (DEEM) method which can leverage the generated experienced experts and let LLMs reason in a semi-parametric way, making the experts more generalizable and reliable. Experimental results demonstrate that DEEM consistently achieves the best results on three standard benchmarks, outperforms methods with self-consistency reasoning, and reduces the bias of LLMs.
Related papers
- LFME: A Simple Framework for Learning from Multiple Experts in Domain Generalization [61.16890890570814]
Domain generalization (DG) methods aim to maintain good performance in an unseen target domain by using training data from multiple source domains.
This work introduces a simple yet effective framework, dubbed learning from multiple experts (LFME) that aims to make the target model an expert in all source domains to improve DG.
arXiv Detail & Related papers (2024-10-22T13:44:10Z) - Unveiling and Consulting Core Experts in Retrieval-Augmented MoE-based LLMs [64.9693406713216]
Internal mechanisms that contribute to the effectiveness of RAG systems remain underexplored.
Our experiments reveal that several core groups of experts are primarily responsible for RAG-related behaviors.
We propose several strategies to enhance RAG's efficiency and effectiveness through expert activation.
arXiv Detail & Related papers (2024-10-20T16:08:54Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
Despite their excellence in many domains, potential issues are under-explored, undermining their reliability and the scope of their utility.
We identify 12 key potential biases and propose a new automated bias quantification framework-CALM- which quantifies and analyzes each type of bias in LLM-as-a-Judge.
Our work highlights the need for stakeholders to address these issues and remind users to exercise caution in LLM-as-a-Judge applications.
arXiv Detail & Related papers (2024-10-03T17:53:30Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
We propose a method of grouping and pruning similar experts to improve the model's parameter efficiency.
We validate the effectiveness of our method by pruning three state-of-the-art MoE architectures.
The evaluation shows that our method outperforms other model pruning methods on a range of natural language tasks.
arXiv Detail & Related papers (2024-07-12T17:25:02Z) - Let the Expert Stick to His Last: Expert-Specialized Fine-Tuning for Sparse Architectural Large Language Models [24.915387910764082]
Expert-Specialized Fine-Tuning, or ESFT, tunes the experts most relevant to downstream tasks while freezing the other experts and modules.
MoE models with finer-grained experts are more advantageous in selecting the combination of experts that are most relevant to downstream tasks.
arXiv Detail & Related papers (2024-07-02T03:11:13Z) - Large Language Models can Deliver Accurate and Interpretable Time Series Anomaly Detection [34.40206965758026]
Time series anomaly detection (TSAD) plays a crucial role in various industries by identifying atypical patterns that deviate from standard trends.
Traditional TSAD models, which often rely on deep learning, require extensive training data and operate as black boxes.
We propose LLMAD, a novel TSAD method that employs Large Language Models (LLMs) to deliver accurate and interpretable TSAD results.
arXiv Detail & Related papers (2024-05-24T09:07:02Z) - Beyond the Known: Investigating LLMs Performance on Out-of-Domain Intent
Detection [34.135738700682055]
This paper conducts a comprehensive evaluation of large language models (LLMs) represented by ChatGPT.
We find that LLMs exhibit strong zero-shot and few-shot capabilities, but is still at a disadvantage compared to models fine-tuned with full resource.
arXiv Detail & Related papers (2024-02-27T07:02:10Z) - Not All Experts are Equal: Efficient Expert Pruning and Skipping for Mixture-of-Experts Large Language Models [90.14693869269519]
MoE LLMs can achieve higher performance with fewer parameters, but it is still hard to deploy them due to their immense parameter sizes.
This paper mainly aims to enhance the deployment efficiency of MoE LLMs by introducing plug-and-play expert-level sparsification techniques.
arXiv Detail & Related papers (2024-02-22T18:56:07Z) - Omni-SMoLA: Boosting Generalist Multimodal Models with Soft Mixture of Low-rank Experts [74.40198929049959]
Large multi-modal models (LMMs) exhibit remarkable performance across numerous tasks.
generalist LMMs often suffer from performance degradation when tuned over a large collection of tasks.
We propose Omni-SMoLA, an architecture that uses the Soft MoE approach to mix many multimodal low rank experts.
arXiv Detail & Related papers (2023-12-01T23:04:27Z) - Separate the Wheat from the Chaff: Model Deficiency Unlearning via
Parameter-Efficient Module Operation [25.6335380561493]
Large language models (LLMs) have been widely used in various applications but are known to suffer from issues related to untruthfulness and toxicity.
We propose a PEMs operation approach, namely Extraction-before-Subtraction (Ext-Sub), to enhance the truthfulness and detoxification of LLMs.
arXiv Detail & Related papers (2023-08-16T01:46:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.