論文の概要: Adaptive MPC-based quadrupedal robot control under periodic disturbances
- arxiv url: http://arxiv.org/abs/2505.12361v1
- Date: Sun, 18 May 2025 10:48:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.189669
- Title: Adaptive MPC-based quadrupedal robot control under periodic disturbances
- Title(参考訳): 周期的障害下における適応型MPC型四足歩行ロボット制御
- Authors: Elizaveta Pestova, Ilya Osokin, Danil Belov, Pavel Osinenko,
- Abstract要約: 本研究は, 軽量回帰器を用いた周期的乱れの推定に充てられる。
シミュレーション設定、コード、計算スクリプトを含むすべてのソースファイルはGitHubで入手できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in adaptive control for reference trajectory tracking enable quadrupedal robots to perform locomotion tasks under challenging conditions. There are methods enabling the estimation of the external disturbances in terms of forces and torques. However, a specific case of disturbances that are periodic was not explicitly tackled in application to quadrupeds. This work is devoted to the estimation of the periodic disturbances with a lightweight regressor using simplified robot dynamics and extracting the disturbance properties in terms of the magnitude and frequency. Experimental evidence suggests performance improvement over the baseline static disturbance compensation. All source files, including simulation setups, code, and calculation scripts, are available on GitHub at https://github.com/aidagroup/quad-periodic-mpc.
- Abstract(参考訳): 参照軌道追跡のための適応制御の最近の進歩により、四足歩行ロボットは困難な条件下で移動作業を行うことができる。
力やトルクの観点から外乱を推定できる手法がある。
しかし、周期的な障害の特定のケースは、四重項に適用するために明示的に取り組まなかった。
本研究は,簡易ロボット力学を用いた軽量回帰器を用いた周期的外乱の推定と,その大きさと周波数による外乱特性の抽出に充てられる。
実験的な証拠は、ベースラインの静的乱れ補償よりも性能の向上を示唆している。
シミュレーション設定、コード、計算スクリプトを含むすべてのソースファイルはGitHubでhttps://github.com/aidagroup/quad- periodic-mpc.comから入手できる。
関連論文リスト
- MULE: Multi-terrain and Unknown Load Adaptation for Effective Quadrupedal Locomotion [1.479858319622657]
四足歩行ロボットは、様々な地形にまたがる荷積み作業にますます利用されている。
本研究では,四足歩行ロボットが様々なペイロードと多様な地形に適応できる適応強化学習フレームワークを提案する。
提案手法はIsaac Gymの大規模シミュレーション実験と,Unitree Go1の4倍体上での実際のハードウェア展開により検証する。
論文 参考訳(メタデータ) (2025-05-01T12:41:35Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - Designing a Robust Low-Level Agnostic Controller for a Quadrotor with
Actor-Critic Reinforcement Learning [0.38073142980732994]
ソフトアクター・クリティカルに基づく低レベルウェイポイント誘導制御器の訓練段階におけるドメインランダム化を提案する。
トレーニング中の四元数力学に一定の不確実性を導入することにより、より大規模な四元数パラメータを用いて提案課題を実行することができる制御器が得られることを示す。
論文 参考訳(メタデータ) (2022-10-06T14:58:19Z) - Learning Low-Frequency Motion Control for Robust and Dynamic Robot
Locomotion [10.838285018473725]
実ANYmal C四重極上で8Hzの低速動作を行う学習モーションコントローラを用いて,ロバストでダイナミックな移動を実演する。
このロボットは、1.5m/sの高速度を頑健かつ反復的に達成し、不均一な地形を横切ることができ、予期せぬ外乱に抵抗することができる。
論文 参考訳(メタデータ) (2022-09-29T15:55:33Z) - Learning a Single Near-hover Position Controller for Vastly Different
Quadcopters [56.37274861303324]
本稿では,クワッドコプターのための適応型ニアホバー位置制御器を提案する。
これは、非常に異なる質量、大きさ、運動定数を持つクワッドコプターに展開することができる。
また、実行中に未知の障害に迅速に適応する。
論文 参考訳(メタデータ) (2022-09-19T17:55:05Z) - Adapting Rapid Motor Adaptation for Bipedal Robots [73.5914982741483]
移動制御の急速な適応の最近の進歩を活用し、二足歩行ロボットで作業できるように拡張する。
A-RMAはモデルフリーRLを用いて微調整することで不完全外部推定器の基本方針を適応する。
シミュレーションにおいて,A-RMAはRLベースのベースラインコントローラやモデルベースコントローラよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-30T17:59:09Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
深層強化学習アルゴリズムは、ソースとターゲット環境の相違により、現実世界のタスクでは不十分な処理を行うことができる。
本研究では,前もって乱れをモデル化せずにロバストなポリシーを学習するための,モデルフリーなアクター批判アルゴリズムを提案する。
いくつかのロボット制御タスクの実験では、SCPOは遷移力学の乱れに対する堅牢なポリシーを学習している。
論文 参考訳(メタデータ) (2021-12-20T13:13:05Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - Finite State Machine Policies Modulating Trajectory Generator [5.939164722752263]
研究者は、トラックジェネレータ(TG)とフィードバック制御信号を組み合わせてより堅牢な動作を実現する新しいアーキテクチャ、PMTG(Policies Modulating Trajectory Generators)を調査した。
本研究では、単純なTGを非同期有限状態マシン(Async FSM)に置き換えることで、PMTGフレームワークを有限状態マシンPMTGで拡張することを提案する。
提案したアーキテクチャは、シミュレーションと実際のロボットの両方において、挑戦的な地形や外乱といった様々なシナリオでより堅牢な動作を実現することができることを示した。
論文 参考訳(メタデータ) (2021-09-26T20:27:53Z) - Learning to Control Direct Current Motor for Steering in Real Time via
Reinforcement Learning [2.3554584457413483]
実機と模擬環境の両方においてゴルフカートの位置制御にNFQアルゴリズムを用いる。
シミュレーションでは4分、実際のハードウェアでは11分で制御を成功させました。
論文 参考訳(メタデータ) (2021-07-31T03:24:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。