DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization
- URL: http://arxiv.org/abs/2505.12366v2
- Date: Tue, 10 Jun 2025 03:47:30 GMT
- Title: DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization
- Authors: Gang Li, Ming Lin, Tomer Galanti, Zhengzhong Tu, Tianbao Yang,
- Abstract summary: Group Relative Policy Optimization is a reinforcement learning method for large reasoning models (LRMs)<n>In this work, we analyze the GRPO objective under a binary reward setting and reveal an inherent limitation of question-level difficulty bias.<n>We introduce a new Discriminative Constrained Optimization framework for reinforcing LRMs, grounded in the principle of discriminative learning.
- Score: 55.06360285372418
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent success and openness of DeepSeek-R1 have brought widespread attention to Group Relative Policy Optimization (GRPO) as a reinforcement learning method for large reasoning models (LRMs). In this work, we analyze the GRPO objective under a binary reward setting and reveal an inherent limitation of question-level difficulty bias. We also identify a connection between GRPO and traditional discriminative methods in supervised learning. Motivated by these insights, we introduce a new Discriminative Constrained Optimization (DisCO) framework for reinforcing LRMs, grounded in the principle of discriminative learning. The main differences between DisCO and GRPO and its recent variants are: (1) it replaces the group relative objective with a discriminative objective defined by a scoring function; (2) it abandons clipping-based surrogates in favor of non-clipping RL surrogate objectives used as scoring functions; (3) it employs a simple yet effective constrained optimization approach to enforce the KL divergence constraint, ensuring stable training. As a result, DisCO offers notable advantages over GRPO and its variants: (i) it completely eliminates difficulty bias by adopting discriminative objectives; (ii) it addresses the entropy instability in GRPO and its variants through the use of non-clipping scoring functions and a constrained optimization approach; (iii) it allows the incorporation of advanced discriminative learning techniques to address data imbalance, where a significant number of questions have more negative than positive generated answers during training. Our experiments on enhancing the mathematical reasoning capabilities of SFT-finetuned models show that DisCO significantly outperforms GRPO and its improved variants such as DAPO, achieving average gains of 7\% over GRPO and 6\% over DAPO across six benchmark tasks for an 1.5B model.
Related papers
- Group Causal Policy Optimization for Post-Training Large Language Models [10.791474908144703]
Group Relative Policy Optimization ( GRPO) treats candidate responses as independent, overlooking semantic interactions such as complementarity and contradiction.<n>We propose Group Causal Policy Optimization (GCPO), which integrates causal structure into optimization through two key components.<n>GCPO consistently surpasses existing methods, including GRPO across multiple reasoning benchmarks.
arXiv Detail & Related papers (2025-08-07T14:17:28Z) - GRPO-CARE: Consistency-Aware Reinforcement Learning for Multimodal Reasoning [53.894789613838654]
We introduce SEED-Bench-R1, a benchmark with complex real-world videos requiring balanced perception and reasoning.<n>Using SEED-Bench-R1, we find that standard GRPO, while improving answer accuracy, often reduces logical coherence between reasoning steps and answers, with only a 57.9% consistency rate.<n>We propose GRPO-CARE, a consistency-aware RL framework optimizing both answer correctness and reasoning coherence without explicit supervision.
arXiv Detail & Related papers (2025-06-19T08:49:13Z) - Reinforcing Video Reasoning with Focused Thinking [65.85683941058916]
We propose TW-GRPO, a novel framework that enhances visual reasoning with focused thinking and dense reward granularity.<n>Specifically, we employ a token weighting mechanism that prioritizes tokens with high informational density.<n>We also reformulate RL training by shifting from single-choice to multi-choice QA tasks.
arXiv Detail & Related papers (2025-05-30T15:42:19Z) - On-Policy RL with Optimal Reward Baseline [109.47676554514193]
On-Policy RL with Optimal reward baseline (OPO) is a novel and simplified reinforcement learning algorithm.<n>OPO emphasizes the importance of exact on-policy training, which empirically stabilizes the training process and enhances exploration.<n>Results demonstrate OPO's superior performance and training stability without additional models or regularization terms.
arXiv Detail & Related papers (2025-05-29T15:58:04Z) - On the Effect of Negative Gradient in Group Relative Deep Reinforcement Optimization [52.76330545825083]
Reinforcement learning (RL) has become popular in enhancing the reasoning capabilities of large language models (LLMs)<n>We identify a previously unrecognized phenomenon we term Lazy Likelihood Displacement (LLD), wherein the likelihood of correct responses marginally increases or even decreases during training.<n>We develop a method called NTHR, which downweights penalties on tokens contributing to the LLD. Unlike prior DPO-based approaches, NTHR takes advantage of GRPO's group-based structure, using correct responses as anchors to identify influential tokens.
arXiv Detail & Related papers (2025-05-24T18:58:51Z) - DISCO Balances the Scales: Adaptive Domain- and Difficulty-Aware Reinforcement Learning on Imbalanced Data [29.06340707914799]
We propose a principled extension to GRPO that addresses inter-group imbalance with two key innovations.<n> Domain-aware reward scaling counteracts frequency bias by reweighting optimization based on domain prevalence.<n>Difficulty-aware reward scaling leverages prompt-level self-consistency to identify and prioritize uncertain prompts that offer greater learning value.
arXiv Detail & Related papers (2025-05-21T03:43:29Z) - GVPO: Group Variance Policy Optimization for Large Language Model Post-Training [18.431007107428574]
Group Variance Policy Optimization (GVPO) incorporates the analytical solution to KL-constrained reward directly into its weights.<n>GVPO offers two key advantages: it guarantees a unique optimal solution, exactly the KL-constrained reward objective, and it supports flexible sampling distributions.<n>By unifying theoretical guarantees with practical adaptability, GVPO establishes a new paradigm for reliable and versatile LLM post-training.
arXiv Detail & Related papers (2025-04-28T09:02:24Z) - A Minimalist Approach to LLM Reasoning: from Rejection Sampling to Reinforce [68.99924691391048]
We revisit GRPO from a reinforce-like algorithm perspective and analyze its core components.<n>We find that a simple rejection sampling baseline, RAFT, yields competitive performance than GRPO and PPO.<n>Motivated by this insight, we propose Reinforce-Rej, a minimal extension of policy gradient that filters both entirely incorrect and entirely correct samples.
arXiv Detail & Related papers (2025-04-15T16:15:02Z) - GPG: A Simple and Strong Reinforcement Learning Baseline for Model Reasoning [17.544255491384046]
We propose a minimalist RL approach termed Group Policy Gradient (GPG)<n>Unlike conventional methods, GPG directly optimize the original RL objective, thus obviating the need for surrogate loss functions.<n>Our approach achieves superior performance without relying on auxiliary techniques or adjustments.
arXiv Detail & Related papers (2025-04-03T12:53:41Z) - Adaptive Group Policy Optimization: Towards Stable Training and Token-Efficient Reasoning [4.325768677318839]
We propose Adaptive Group Policy Optimization (AGPO) which contains two simple but effective modifications.<n>The experiments demonstrate our methods achieve more stable training and comparable or superior performance with significantly fewer tokens in reasoning steps.
arXiv Detail & Related papers (2025-03-20T08:48:57Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.<n>We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.<n>We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Group Robust Preference Optimization in Reward-free RLHF [23.622835830345725]
We propose a novel Group Robust Preference Optimization (GRPO) method to align large language models to individual groups' preferences robustly.
To achieve this, GRPO adaptively and sequentially weights the importance of different groups, prioritizing groups with worse cumulative loss.
We significantly improved performance for the worst-performing groups, reduced loss imbalances across groups, and improved probability accuracies.
arXiv Detail & Related papers (2024-05-30T17:50:04Z) - Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization [61.39201891894024]
Group distributionally robust optimization (group DRO) can minimize the worst-case loss over pre-defined groups.
We reformulate the group DRO framework by proposing Q-Diversity.
Characterized by an interactive training mode, Q-Diversity relaxes the group identification from annotation into direct parameterization.
arXiv Detail & Related papers (2023-05-20T07:02:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.