GRPO-CARE: Consistency-Aware Reinforcement Learning for Multimodal Reasoning
- URL: http://arxiv.org/abs/2506.16141v1
- Date: Thu, 19 Jun 2025 08:49:13 GMT
- Title: GRPO-CARE: Consistency-Aware Reinforcement Learning for Multimodal Reasoning
- Authors: Yi Chen, Yuying Ge, Rui Wang, Yixiao Ge, Junhao Cheng, Ying Shan, Xihui Liu,
- Abstract summary: We introduce SEED-Bench-R1, a benchmark with complex real-world videos requiring balanced perception and reasoning.<n>Using SEED-Bench-R1, we find that standard GRPO, while improving answer accuracy, often reduces logical coherence between reasoning steps and answers, with only a 57.9% consistency rate.<n>We propose GRPO-CARE, a consistency-aware RL framework optimizing both answer correctness and reasoning coherence without explicit supervision.
- Score: 53.894789613838654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent reinforcement learning approaches, such as outcome-supervised GRPO, have advanced Chain-of-Thought reasoning in large language models (LLMs), yet their adaptation to multimodal LLMs (MLLMs) is unexplored. To address the lack of rigorous evaluation for MLLM post-training methods, we introduce SEED-Bench-R1, a benchmark with complex real-world videos requiring balanced perception and reasoning. It offers a large training set and evaluates generalization across three escalating challenges: in-distribution, cross-environment, and cross-environment-task scenarios. Using SEED-Bench-R1, we find that standard GRPO, while improving answer accuracy, often reduces logical coherence between reasoning steps and answers, with only a 57.9% consistency rate. This stems from reward signals focusing solely on final answers, encouraging shortcuts, and strict KL penalties limiting exploration.To address this, we propose GRPO-CARE, a consistency-aware RL framework optimizing both answer correctness and reasoning coherence without explicit supervision. GRPO-CARE introduces a two-tiered reward: (1) a base reward for answer correctness, and (2) an adaptive consistency bonus, computed by comparing the model's reasoning-to-answer likelihood (via a slowly-evolving reference model) against group peers.This dual mechanism amplifies rewards for reasoning paths that are both correct and logically consistent. Replacing KL penalties with this adaptive bonus, GRPO-CARE outperforms standard GRPO on SEED-Bench-R1, achieving a 6.7% performance gain on the hardest evaluation level and a 24.5% improvement in consistency. It also shows strong transferability, improving model performance across diverse video understanding benchmarks. Our work contributes a systematically designed benchmark and a generalizable post-training framework, advancing the development of more interpretable and robust MLLMs.
Related papers
- Multi-Layer GRPO: Enhancing Reasoning and Self-Correction in Large Language Models [3.0763741715155666]
We propose MGRPO (Multi-layer GRPO) to foster reasoning and self-correction abilities.<n>MGRPO significantly outperforms standard GRPO, achieving superior performance by fostering both reasoning and self-correction abilities.
arXiv Detail & Related papers (2025-06-05T08:27:34Z) - Reinforcing Video Reasoning with Focused Thinking [65.85683941058916]
We propose TW-GRPO, a novel framework that enhances visual reasoning with focused thinking and dense reward granularity.<n>Specifically, we employ a token weighting mechanism that prioritizes tokens with high informational density.<n>We also reformulate RL training by shifting from single-choice to multi-choice QA tasks.
arXiv Detail & Related papers (2025-05-30T15:42:19Z) - RAG-Zeval: Towards Robust and Interpretable Evaluation on RAG Responses through End-to-End Rule-Guided Reasoning [64.46921169261852]
RAG-Zeval is a novel end-to-end framework that formulates faithfulness and correctness evaluation as a rule-guided reasoning task.<n>Our approach trains evaluators with reinforcement learning, facilitating compact models to generate comprehensive and sound assessments.<n>Experiments demonstrate RAG-Zeval's superior performance, achieving the strongest correlation with human judgments.
arXiv Detail & Related papers (2025-05-28T14:55:33Z) - DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization [55.06360285372418]
Group Relative Policy Optimization is a reinforcement learning method for large reasoning models (LRMs)<n>In this work, we analyze the GRPO objective under a binary reward setting and reveal an inherent limitation of question-level difficulty bias.<n>We introduce a new Discriminative Constrained Optimization framework for reinforcing LRMs, grounded in the principle of discriminative learning.
arXiv Detail & Related papers (2025-05-18T11:08:32Z) - A Minimalist Approach to LLM Reasoning: from Rejection Sampling to Reinforce [68.99924691391048]
We revisit GRPO from a reinforce-like algorithm perspective and analyze its core components.<n>We find that a simple rejection sampling baseline, RAFT, yields competitive performance than GRPO and PPO.<n>Motivated by this insight, we propose Reinforce-Rej, a minimal extension of policy gradient that filters both entirely incorrect and entirely correct samples.
arXiv Detail & Related papers (2025-04-15T16:15:02Z) - Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1 [53.894789613838654]
We introduce SEED-Bench-R1, a benchmark designed to evaluate post-training methods for MLLMs in video understanding.<n>It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions.<n>Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT)<n>Our detailed analysis reveals that RL enhances visual perception but often produces less coherent reasoning chains.
arXiv Detail & Related papers (2025-03-31T17:55:23Z) - AURORA:Automated Training Framework of Universal Process Reward Models via Ensemble Prompting and Reverse Verification [31.463529258956452]
We present AURORA, a novel framework for training universal process reward models (PRMs) using ensemble prompting and reverse verification.<n>The framework employs a two-phase approach: First, it uses diverse prompting strategies and ensemble methods to perform automated annotation and evaluation of processes.<n>To assess the framework's performance, we extend beyond the existing ProcessBench benchmark by introducing UniversalBench.
arXiv Detail & Related papers (2025-02-17T07:41:27Z) - Entropy-Regularized Process Reward Model [30.279394036823092]
Large language models (LLMs) have shown promise in performing complex multi-step reasoning, yet they continue to struggle with mathematical reasoning.<n>We propose an entropy-regularized process reward model (ER-PRM) that integrates KL-regularized Markov Decision Processes (MDP)<n>Our empirical experiments on the MATH and GSM8K benchmarks demonstrate that ER-PRM consistently outperforms existing process reward models.
arXiv Detail & Related papers (2024-12-15T01:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.