Engineering application of physics-informed neural networks for Saint-Venant torsion
- URL: http://arxiv.org/abs/2505.12389v1
- Date: Sun, 18 May 2025 12:30:06 GMT
- Title: Engineering application of physics-informed neural networks for Saint-Venant torsion
- Authors: Su Yeong Jo, Sanghyeon Park, Seungchan Ko, Jongcheon Park, Hosung Kim, Sangseung Lee, Joongoo Jeon,
- Abstract summary: The objective of this study is to develop a series of novel numerical methods based on physics-informed neural networks (PINN) for solving the Saint-Venant torsion equations.<n>First, a PINN solver was developed to compute the torsional constant for bars with arbitrary cross-sectional geometries.<n>This was followed by the development of a solver capable of handling cases with sharp geometric transitions; variable-scaling PINN (VS-PINN)<n>Finally, a parametric PINN was constructed to address the limitations of conventional single-instance PINN.
- Score: 0.05057680722486273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Saint-Venant torsion theory is a classical theory for analyzing the torsional behavior of structural components, and it remains critically important in modern computational design workflows. Conventional numerical methods, including the finite element method (FEM), typically rely on mesh-based approaches to obtain approximate solutions. However, these methods often require complex and computationally intensive techniques to overcome the limitations of approximation, leading to significant increases in computational cost. The objective of this study is to develop a series of novel numerical methods based on physics-informed neural networks (PINN) for solving the Saint-Venant torsion equations. Utilizing the expressive power and the automatic differentiation capability of neural networks, the PINN can solve partial differential equations (PDEs) along with boundary conditions without the need for intricate computational techniques. First, a PINN solver was developed to compute the torsional constant for bars with arbitrary cross-sectional geometries. This was followed by the development of a solver capable of handling cases with sharp geometric transitions; variable-scaling PINN (VS-PINN). Finally, a parametric PINN was constructed to address the limitations of conventional single-instance PINN. The results from all three solvers showed good agreement with reference solutions, demonstrating their accuracy and robustness. Each solver can be selectively utilized depending on the specific requirements of torsional behavior analysis.
Related papers
- High precision PINNs in unbounded domains: application to singularity formulation in PDEs [83.50980325611066]
We study the choices of neural network ansatz, sampling strategy, and optimization algorithm.<n>For 1D Burgers equation, our framework can lead to a solution with very high precision.<n>For the 2D Boussinesq equation, we obtain a solution whose loss is $4$ digits smaller than that obtained in citewang2023asymptotic with fewer training steps.
arXiv Detail & Related papers (2025-06-24T02:01:44Z) - Weak Physics Informed Neural Networks for Geometry Compatible Hyperbolic Conservation Laws on Manifolds [1.4583059436979549]
Physics-informed neural networks (PINNs) offer a powerful approach for solving high-dimensional partial differential equations (PDEs) in complex geometries.<n> PINNs may struggle to approximate solutions with low regularity, such as those arising from nonlinear hyperbolic equations.<n>We develop a framework for PINNs tailored to the efficient approximation of weak solutions.
arXiv Detail & Related papers (2025-05-25T08:36:56Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
Physics-informed neural networks (PINNs) are a new tool for solving boundary value problems.
Recent investigations have shown that when designing loss functions for many engineering problems, using first-order derivatives and combining equations from both strong and weak forms can lead to much better accuracy.
In this work, we propose applying the mixed formulation to solve multi-physical problems, specifically a stationary thermo-mechanically coupled system of equations.
arXiv Detail & Related papers (2023-02-09T21:56:59Z) - Deep NURBS -- Admissible Physics-informed Neural Networks [0.0]
We propose a new numerical scheme for physics-informed neural networks (PINNs) that enables precise and inexpensive solution for partial differential equations (PDEs)
The proposed approach combines admissible NURBS parametrizations required to define the physical domain and the Dirichlet boundary conditions with a PINN solver.
arXiv Detail & Related papers (2022-10-25T10:35:45Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
We propose a new semi-analytic physics informed neural network (PINN) to solve singularly perturbed boundary value problems.
The PINN is a scientific machine learning framework that offers a promising perspective for finding numerical solutions to partial differential equations.
arXiv Detail & Related papers (2022-08-19T04:26:40Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable
domain decomposition approach for solving differential equations [20.277873724720987]
We propose a new, scalable approach for solving large problems relating to differential equations called Finite Basis PINNs (FBPINNs)
FBPINNs are inspired by classical finite element methods, where the solution of the differential equation is expressed as the sum of a finite set of basis functions with compact support.
In FBPINNs neural networks are used to learn these basis functions, which are defined over small, overlapping subdomain problems.
arXiv Detail & Related papers (2021-07-16T13:03:47Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNs approach allows training neural networks while respecting the PDEs as a strong constraint in the optimization.
In standard small-scale circulation simulations, it is shown that the conventional approach incorporates a pseudo diffusive effect that is almost as large as the effect of the turbulent diffusion model.
Of all the schemes tested, only the PINNs approximation accurately predicted the outcome.
arXiv Detail & Related papers (2021-03-15T05:39:17Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.