Weak Physics Informed Neural Networks for Geometry Compatible Hyperbolic Conservation Laws on Manifolds
- URL: http://arxiv.org/abs/2505.19036v2
- Date: Thu, 05 Jun 2025 03:29:39 GMT
- Title: Weak Physics Informed Neural Networks for Geometry Compatible Hyperbolic Conservation Laws on Manifolds
- Authors: Hanfei Zhou, Lei Shi,
- Abstract summary: Physics-informed neural networks (PINNs) offer a powerful approach for solving high-dimensional partial differential equations (PDEs) in complex geometries.<n> PINNs may struggle to approximate solutions with low regularity, such as those arising from nonlinear hyperbolic equations.<n>We develop a framework for PINNs tailored to the efficient approximation of weak solutions.
- Score: 1.4583059436979549
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs), owing to their mesh-free nature, offer a powerful approach for solving high-dimensional partial differential equations (PDEs) in complex geometries, including irregular domains. This capability effectively circumvents the challenges of mesh generation that traditional numerical methods face in high-dimensional or geometrically intricate settings. While recent studies have extended PINNs to manifolds, the theoretical foundations remain scarce. Existing theoretical analyses of PINNs in Euclidean space often rely on smoothness assumptions for the solutions. However, recent empirical evidence indicates that PINNs may struggle to approximate solutions with low regularity, such as those arising from nonlinear hyperbolic equations. In this paper, we develop a framework for PINNs tailored to the efficient approximation of weak solutions, particularly nonlinear hyperbolic equations defined on manifolds. We introduce a novel weak PINN (wPINN) formulation on manifolds that leverages the well-posedness theory to approximate entropy solutions of geometry-compatible hyperbolic conservation laws on manifolds. Employing tools from approximation theory, we establish a convergence analysis of the algorithm, including an analysis of approximation errors for time-dependent entropy solutions. This analysis provides insight into the accumulation of approximation errors over long time horizons. Notably, the network complexity depends only on the intrinsic dimension, independent of the ambient space dimension. Our results match the minimax rate in the d-dimensional Euclidean space, demonstrating that PINNs can alleviate the curse of dimensionality in the context of low-dimensional manifolds. Finally, we validate the performance of the proposed wPINN framework through numerical experiments, confirming its ability to efficiently approximate entropy solutions on manifolds.
Related papers
- High precision PINNs in unbounded domains: application to singularity formulation in PDEs [83.50980325611066]
We study the choices of neural network ansatz, sampling strategy, and optimization algorithm.<n>For 1D Burgers equation, our framework can lead to a solution with very high precision.<n>For the 2D Boussinesq equation, we obtain a solution whose loss is $4$ digits smaller than that obtained in citewang2023asymptotic with fewer training steps.
arXiv Detail & Related papers (2025-06-24T02:01:44Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - Physics-informed deep learning and compressive collocation for high-dimensional diffusion-reaction equations: practical existence theory and numerics [5.380276949049726]
We develop and analyze an efficient high-dimensional Partial Differential Equations solver based on Deep Learning (DL)
We show, both theoretically and numerically, that it can compete with a novel stable and accurate compressive spectral collocation method.
arXiv Detail & Related papers (2024-06-03T17:16:11Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Solving PDEs on Spheres with Physics-Informed Convolutional Neural Networks [17.69666422395703]
Physics-informed neural networks (PINNs) have been demonstrated to be efficient in solving partial differential equations (PDEs)
In this paper, we establish rigorous analysis of the physics-informed convolutional neural network (PICNN) for solving PDEs on the sphere.
arXiv Detail & Related papers (2023-08-18T14:58:23Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Deep NURBS -- Admissible Physics-informed Neural Networks [0.0]
We propose a new numerical scheme for physics-informed neural networks (PINNs) that enables precise and inexpensive solution for partial differential equations (PDEs)
The proposed approach combines admissible NURBS parametrizations required to define the physical domain and the Dirichlet boundary conditions with a PINN solver.
arXiv Detail & Related papers (2022-10-25T10:35:45Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
We propose a new semi-analytic physics informed neural network (PINN) to solve singularly perturbed boundary value problems.
The PINN is a scientific machine learning framework that offers a promising perspective for finding numerical solutions to partial differential equations.
arXiv Detail & Related papers (2022-08-19T04:26:40Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
We propose to expand the solution interval gradually to make the PINN converge to the correct solution.
All ensemble members converge to the same solution in the vicinity of observed data.
We show experimentally that the proposed method can improve the accuracy of the found solution.
arXiv Detail & Related papers (2022-04-11T14:05:34Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNs approach allows training neural networks while respecting the PDEs as a strong constraint in the optimization.
In standard small-scale circulation simulations, it is shown that the conventional approach incorporates a pseudo diffusive effect that is almost as large as the effect of the turbulent diffusion model.
Of all the schemes tested, only the PINNs approximation accurately predicted the outcome.
arXiv Detail & Related papers (2021-03-15T05:39:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.