Few-Shot Concept Unlearning with Low Rank Adaptation
- URL: http://arxiv.org/abs/2505.12395v1
- Date: Sun, 18 May 2025 12:44:30 GMT
- Title: Few-Shot Concept Unlearning with Low Rank Adaptation
- Authors: Udaya Shreyas, L. N. Aadarsh,
- Abstract summary: When generating images, these models can generate sensitive image data, which can be threatening to privacy or may violate copyright laws of private entities.<n>We propose an algorithm that aims to remove the influence of concepts in diffusion models through updating the gradients of the final layers of the text encoders.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Image Generation models are a trending topic nowadays, with many people utilizing Artificial Intelligence models in order to generate images. There are many such models which, given a prompt of a text, will generate an image which depicts said prompt. There are many image generation models, such as Latent Diffusion Models, Denoising Diffusion Probabilistic Models, Generative Adversarial Networks and many more. When generating images, these models can generate sensitive image data, which can be threatening to privacy or may violate copyright laws of private entities. Machine unlearning aims at removing the influence of specific data subsets from the trained models and in the case of image generation models, remove the influence of a concept such that the model is unable to generate said images of the concept when prompted. Conventional retraining of the model can take upto days, hence fast algorithms are the need of the hour. In this paper we propose an algorithm that aims to remove the influence of concepts in diffusion models through updating the gradients of the final layers of the text encoders. Using a weighted loss function, we utilize backpropagation in order to update the weights of the final layers of the Text Encoder componet of the Stable Diffusion Model, removing influence of the concept from the text-image embedding space, such that when prompted, the result is an image not containing the concept. The weighted loss function makes use of Textual Inversion and Low-Rank Adaptation.We perform our experiments on Latent Diffusion Models, namely the Stable Diffusion v2 model, with an average concept unlearning runtime of 50 seconds using 4-5 images.
Related papers
- Model Integrity when Unlearning with T2I Diffusion Models [11.321968363411145]
We propose approximate Machine Unlearning algorithms to reduce the generation of specific types of images, characterized by samples from a forget distribution''
We then propose unlearning algorithms that demonstrate superior effectiveness in preserving model integrity compared to existing baselines.
arXiv Detail & Related papers (2024-11-04T13:15:28Z) - Not Every Image is Worth a Thousand Words: Quantifying Originality in Stable Diffusion [21.252145402613472]
This work addresses the challenge of quantifying originality in text-to-image (T2I) generative diffusion models.
We propose a method that leverages textual inversion to measure the originality of an image based on the number of tokens required for its reconstruction by the model.
arXiv Detail & Related papers (2024-08-15T14:42:02Z) - DEEM: Diffusion Models Serve as the Eyes of Large Language Models for Image Perception [66.88792390480343]
We propose DEEM, a simple but effective approach that utilizes the generative feedback of diffusion models to align the semantic distributions of the image encoder.<n>DEEM exhibits enhanced robustness and a superior capacity to alleviate model hallucinations while utilizing fewer trainable parameters, less pre-training data, and a smaller base model size.
arXiv Detail & Related papers (2024-05-24T05:46:04Z) - All but One: Surgical Concept Erasing with Model Preservation in
Text-to-Image Diffusion Models [22.60023885544265]
Large-scale datasets may contain sexually explicit, copyrighted, or undesirable content, which allows the model to directly generate them.
Fine-tuning algorithms have been developed to tackle concept erasing in diffusion models.
We present a new approach that solves all of these challenges.
arXiv Detail & Related papers (2023-12-20T07:04:33Z) - Aligning Text-to-Image Diffusion Models with Reward Backpropagation [62.45086888512723]
We propose AlignProp, a method that aligns diffusion models to downstream reward functions using end-to-end backpropagation of the reward gradient.
We show AlignProp achieves higher rewards in fewer training steps than alternatives, while being conceptually simpler.
arXiv Detail & Related papers (2023-10-05T17:59:18Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - Towards Safe Self-Distillation of Internet-Scale Text-to-Image Diffusion
Models [63.20512617502273]
We propose a method called SDD to prevent problematic content generation in text-to-image diffusion models.
Our method eliminates a much greater proportion of harmful content from the generated images without degrading the overall image quality.
arXiv Detail & Related papers (2023-07-12T07:48:29Z) - BLIP-Diffusion: Pre-trained Subject Representation for Controllable
Text-to-Image Generation and Editing [73.74570290836152]
BLIP-Diffusion is a new subject-driven image generation model that supports multimodal control.
Unlike other subject-driven generation models, BLIP-Diffusion introduces a new multimodal encoder which is pre-trained to provide subject representation.
arXiv Detail & Related papers (2023-05-24T04:51:04Z) - Generating images of rare concepts using pre-trained diffusion models [32.5337654536764]
Text-to-image diffusion models can synthesize high-quality images, but they have various limitations.
We show that their limitation is partly due to the long-tail nature of their training data.
We show that rare concepts can be correctly generated by carefully selecting suitable generation seeds in the noise space.
arXiv Detail & Related papers (2023-04-27T20:55:38Z) - Ablating Concepts in Text-to-Image Diffusion Models [57.9371041022838]
Large-scale text-to-image diffusion models can generate high-fidelity images with powerful compositional ability.
These models are typically trained on an enormous amount of Internet data, often containing copyrighted material, licensed images, and personal photos.
We propose an efficient method of ablating concepts in the pretrained model, preventing the generation of a target concept.
arXiv Detail & Related papers (2023-03-23T17:59:42Z) - Uncovering the Disentanglement Capability in Text-to-Image Diffusion
Models [60.63556257324894]
A key desired property of image generative models is the ability to disentangle different attributes.
We propose a simple, light-weight image editing algorithm where the mixing weights of the two text embeddings are optimized for style matching and content preservation.
Experiments show that the proposed method can modify a wide range of attributes, with the performance outperforming diffusion-model-based image-editing algorithms.
arXiv Detail & Related papers (2022-12-16T19:58:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.