Model Integrity when Unlearning with T2I Diffusion Models
- URL: http://arxiv.org/abs/2411.02068v1
- Date: Mon, 04 Nov 2024 13:15:28 GMT
- Title: Model Integrity when Unlearning with T2I Diffusion Models
- Authors: Andrea Schioppa, Emiel Hoogeboom, Jonathan Heek,
- Abstract summary: We propose approximate Machine Unlearning algorithms to reduce the generation of specific types of images, characterized by samples from a forget distribution''
We then propose unlearning algorithms that demonstrate superior effectiveness in preserving model integrity compared to existing baselines.
- Score: 11.321968363411145
- License:
- Abstract: The rapid advancement of text-to-image Diffusion Models has led to their widespread public accessibility. However these models, trained on large internet datasets, can sometimes generate undesirable outputs. To mitigate this, approximate Machine Unlearning algorithms have been proposed to modify model weights to reduce the generation of specific types of images, characterized by samples from a ``forget distribution'', while preserving the model's ability to generate other images, characterized by samples from a ``retain distribution''. While these methods aim to minimize the influence of training data in the forget distribution without extensive additional computation, we point out that they can compromise the model's integrity by inadvertently affecting generation for images in the retain distribution. Recognizing the limitations of FID and CLIPScore in capturing these effects, we introduce a novel retention metric that directly assesses the perceptual difference between outputs generated by the original and the unlearned models. We then propose unlearning algorithms that demonstrate superior effectiveness in preserving model integrity compared to existing baselines. Given their straightforward implementation, these algorithms serve as valuable benchmarks for future advancements in approximate Machine Unlearning for Diffusion Models.
Related papers
- Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Heat Death of Generative Models in Closed-Loop Learning [63.83608300361159]
We study the learning dynamics of generative models that are fed back their own produced content in addition to their original training dataset.
We show that, unless a sufficient amount of external data is introduced at each iteration, any non-trivial temperature leads the model to degenerate.
arXiv Detail & Related papers (2024-04-02T21:51:39Z) - Model Will Tell: Training Membership Inference for Diffusion Models [15.16244745642374]
Training Membership Inference (TMI) task aims to determine whether a specific sample has been used in the training process of a target model.
In this paper, we explore a novel perspective for the TMI task by leveraging the intrinsic generative priors within the diffusion model.
arXiv Detail & Related papers (2024-03-13T12:52:37Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Fixed Point Diffusion Models [13.035518953879539]
Fixed Point Diffusion Model (FPDM) is a novel approach to image generation that integrates the concept of fixed point solving into the framework of diffusion-based generative modeling.
Our approach embeds an implicit fixed point solving layer into the denoising network of a diffusion model, transforming the diffusion process into a sequence of closely-related fixed point problems.
We conduct experiments with state-of-the-art models on ImageNet, FFHQ, CelebA-HQ, and LSUN-Church, demonstrating substantial improvements in performance and efficiency.
arXiv Detail & Related papers (2024-01-16T18:55:54Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
We present a framework for training generative models for density estimation.
We use the score-based diffusion model to generate labeled data.
Once the labeled data are generated, we can train a simple fully connected neural network to learn the generative model in the supervised manner.
arXiv Detail & Related papers (2023-10-22T23:56:19Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
We develop a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows.
We show that achieving a specified precision-recall trade-off corresponds to minimizing a unique $f$-divergence from a family we call the textitPR-divergences.
Our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet.
arXiv Detail & Related papers (2023-05-30T10:07:17Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
Fine-tuning deep learning models can lead to a trade-off between in-distribution (ID) performance and out-of-distribution (OOD) robustness.
We propose a novel fine-tuning method, which uses masked images as counterfactual samples that help improve the robustness of the fine-tuning model.
arXiv Detail & Related papers (2023-03-06T11:51:28Z) - Regularized Autoencoders via Relaxed Injective Probability Flow [35.39933775720789]
Invertible flow-based generative models are an effective method for learning to generate samples, while allowing for tractable likelihood computation and inference.
We propose a generative model based on probability flows that does away with the bijectivity requirement on the model and only assumes injectivity.
arXiv Detail & Related papers (2020-02-20T18:22:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.